Non-linear fluorescence lifetime imaging of biological tissues. 2011

Riccardo Cicchi, and Francesco Saverio Pavone
European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy. rcicchi@lens.unifi.it

In recent years fluorescence microscopy has become a widely used tool for tissue imaging and spectroscopy. Optical techniques, based on both linear and non-linear excitation, have been broadly applied to imaging and characterization of biological tissues. Among fluorescence techniques used in tissue imaging applications, in recent years two and three-photon excited fluorescence have gained increased importance because of their high-resolution deep tissue imaging capability inside optically turbid samples. The main limitation of steady-state fluorescence imaging techniques consists in providing only morphological information; functional information is not detectable without technical improvements. A spectroscopic approach, based on lifetime measurement of tissue fluorescence, can provide functional information about tissue conditions, including its environment, red-ox state, and pH, and hence physiological characterization of the tissue under investigation. Measurement of the fluorescence lifetime is a very important issue for characterizing a biological tissue. Deviation of this property from a control value can be taken as an indicator of disorder and/or malignancy in diseased tissues. Even if much work on this topic has still to be done, including the interpretation of fluorescence lifetime data, we believe that this methodology will gain increasing importance in the field of biophotonics. In this paper, we review methodologies, potentials and results obtained by using fluorescence lifetime imaging microscopy for the investigation of biological tissues.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

Riccardo Cicchi, and Francesco Saverio Pavone
May 2010, Chemical reviews,
Riccardo Cicchi, and Francesco Saverio Pavone
January 2013, Methods in cell biology,
Riccardo Cicchi, and Francesco Saverio Pavone
December 2010, Biomedical optics express,
Riccardo Cicchi, and Francesco Saverio Pavone
October 2019, Methods and applications in fluorescence,
Riccardo Cicchi, and Francesco Saverio Pavone
August 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
Riccardo Cicchi, and Francesco Saverio Pavone
May 1992, Analytical biochemistry,
Riccardo Cicchi, and Francesco Saverio Pavone
January 2024, Biomedical optics express,
Riccardo Cicchi, and Francesco Saverio Pavone
October 2017, Journal of biomedical optics,
Riccardo Cicchi, and Francesco Saverio Pavone
January 2009, Postepy biochemii,
Copied contents to your clipboard!