B-cell-mediated regulation of delayed-type hypersensitivity. 1990

Y Morikawa, and K Kuribayashi, and K Saito
Department of Pathology, Wakayama Medical School, Japan.

We obtained immune sera from mice which received suppressor B cells induced in vitro, injected them into immunized mice, and measured suppression of the delayed-type hypersensitivity (DTH) of these recipient mice. In the recipients, effector-phase suppressor T (Ts) cells were induced, and the action of these Ts cells was antigen-nonspecific. The suppressive material of the sera was adsorbed on a Sepharose column coated with anti-mouse immunoglobulin antibody and acid elution of the column yielded the elute fraction that showed significant suppressive activity. The suppressive activity of the sera was also adsorbed by an antigen-coated Sepharose column, and the eluate from the column had suppressive activity. Moreover, we established antigen-specific monoclonal antibodies, some of which suppressed the DTH in an H-2-nonrestricted way. The isotype or specificity of the antibodies was not related to the suppression, because suppressive and nonsuppressive antibodies belonged to the same immunoglobulin isotype and because the antibodies that recognized the same epitope had different suppressive activities. The Fc portion was not the functional site, because the F(ab')2 fragment had the activity. The suppressive antibody induced effector-phase Ts cells, which had the anti-idiotypic receptor. These findings suggested that antigen-specific antibodies in the immune sera mediated the suppression of DTH by the induction of effector-phase Ts cells in vivo and the idiotype of the antibody stimulated the anti-idiotypic receptor of these Ts cells.

UI MeSH Term Description Entries
D006968 Hypersensitivity, Delayed An increased reactivity to specific antigens mediated not by antibodies but by sensitized T CELLS. Hypersensitivity, Tuberculin-Type,Hypersensitivity, Type IV,Tuberculin-Type Hypersensitivity,Type IV Hypersensitivity,Delayed Hypersensitivity,Delayed Hypersensitivities,Hypersensitivity, Tuberculin Type,Tuberculin Type Hypersensitivity,Tuberculin-Type Hypersensitivities,Type IV Hypersensitivities
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007130 Immunoglobulin Idiotypes Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains. Idiotypes, Immunoglobulin,Ig Idiotypes,Idiotype, Ig,Idiotype, Immunoglobulin,Idiotypes, Ig,Ig Idiotype,Immunoglobulin Idiotype
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D005260 Female Females
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins

Related Publications

Y Morikawa, and K Kuribayashi, and K Saito
August 1982, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Y Morikawa, and K Kuribayashi, and K Saito
September 2016, Journal of molecular medicine (Berlin, Germany),
Y Morikawa, and K Kuribayashi, and K Saito
December 1974, Journal of immunology (Baltimore, Md. : 1950),
Y Morikawa, and K Kuribayashi, and K Saito
February 1996, Contact dermatitis,
Y Morikawa, and K Kuribayashi, and K Saito
January 1967, British medical bulletin,
Y Morikawa, and K Kuribayashi, and K Saito
July 1991, Immunology today,
Y Morikawa, and K Kuribayashi, and K Saito
October 1974, Nature,
Y Morikawa, and K Kuribayashi, and K Saito
June 1976, The Journal of experimental medicine,
Copied contents to your clipboard!