The turnover of tRNAs microinjected into animal cells. 1978

R A Schlegel, and P Iversen, and M Rechsteiner

Red cell-mediated microinjection has been used to study tRNA turnover in SV3T3 mouse cells and TC7 cells, an African green monkey kidney line. The turnover of endogenous tRNA, measured by labeling with 3H-methionine, was first-order with half-lives of approximately one day in SV3T3 and two days in TC7 cells. 32PtRNA isolated from E. coli or TC7 cells turned over at the same rate as endogenous tRNA when injected into either SV3T3 or TC7 cells. This demonstrates that cellular processes, not properties inherent to tRNAs, are responsible for the difference in tRNA turnover observed between SV3T3 and TC7 cells. These results further indicate that the mechanism of tRNA turnover in mammaliam cells does not distinguish prokaryotic from eukaryotic tRNAs. In contrast to unmodified tRNA, glyoxalated tRNA was rapidly degraded upon injection. Thus altered tRNA's, like altered proteins, are turned over more rapidly in animal cells.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

R A Schlegel, and P Iversen, and M Rechsteiner
October 1989, The Journal of cell biology,
R A Schlegel, and P Iversen, and M Rechsteiner
January 1984, Ciba Foundation symposium,
R A Schlegel, and P Iversen, and M Rechsteiner
August 1979, Proceedings of the National Academy of Sciences of the United States of America,
R A Schlegel, and P Iversen, and M Rechsteiner
July 1979, Journal of cellular physiology,
R A Schlegel, and P Iversen, and M Rechsteiner
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
R A Schlegel, and P Iversen, and M Rechsteiner
August 1986, The Journal of cell biology,
R A Schlegel, and P Iversen, and M Rechsteiner
April 1986, Experimental cell research,
R A Schlegel, and P Iversen, and M Rechsteiner
October 1983, The Journal of cell biology,
R A Schlegel, and P Iversen, and M Rechsteiner
November 1986, The Journal of biological chemistry,
Copied contents to your clipboard!