Independent association of serum amyloid P component, protein S, and complement C4b with complement C4b-binding protein and subsequent association of the complex with membranes. 1990

R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
Department of Biochemistry, University of Minnesota, St. Paul 55108.

C4b-binding protein (C4BP) is a large complex assembly of eight subunits that functions as an inhibitor of the complement cascade. A portion of the C4BP in serum exists as a complex with protein S. This study demonstrated that another protein, serum amyloid P component (SAP), also formed a calcium-dependent complex with C4BP. The C4BP.SAP complex was detected by several methods including light scattering intensity, gel filtration, and sucrose density gradient ultracentrifugation. This complex was of high affinity relative to serum levels of these proteins so that no dissociation was detected at 3% of serum protein concentrations. The C4BP.SAP complex was also detected in normal serum and the results suggested that there was virtually no free SAP or uncomplexed C4BP in normal serum. In addition to its complex with C4BP, SAP underwent other calcium-dependent associations such as binding to phospholipid vesicles and self-aggregation. Self-aggregation was highly cooperative with kinetics corresponding to a reaction that was 6th-order with respect to calcium and required about 1.5 mM calcium. In contrast, formation of the SAP.C4BP complex and interaction of SAP with membranes required only about 0.4 and 1.0 mM calcium, respectively. Thus, selection of the correct conditions allowed study of the SAP.C4BP interaction without interference from self-aggregation. All three of these interactions of SAP were mutually exclusive and the SAP. C4BP interaction appeared to be favored over self-aggregation or binding of SAP to phospholipids. It seems likely that the biologically dominant interaction for SAP is with C4BP. The SAP.C4BP complex interacted with protein S and these binding sites appeared to be entirely independent. Furthermore, SAP had little or no effect on the ability of C4BP to bind C4b. Finally, the entire complex of proteins (C4BP, SAP, protein S, and C4b) could associate with membranes in the presence of calcium. Membrane binding occurred through the protein S component. This rather complicated assemblage of proteins probably functions in a regulatory role for the complement cascade or other biological systems. It is possible that elevated levels of SAP or nonequivalent levels of SAP and C4BP could contribute to certain pathological conditions.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003169 Complement Inactivator Proteins Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors. Complement Cytolysis Inhibiting Proteins,Complement Cytolysis Inhibitor Proteins,Complement Inactivating Proteins,Serum Complement Inactivators,Complement Inactivators, Serum,Inactivating Proteins, Complement,Inactivator Proteins, Complement,Inactivators, Serum Complement,Proteins, Complement Inactivating,Proteins, Complement Inactivator
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000683 Serum Amyloid P-Component Amyloid P component is a small, non-fibrillar glycoprotein found in normal serum and in all amyloid deposits. It has a pentagonal (pentaxin) structure. It is an acute phase protein, modulates immunologic responses, inhibits ELASTASE, and has been suggested as an indicator of LIVER DISEASE. Amyloid P Component,Amyloid P-Component, Serum,P Component, Amyloid,P-Component, Serum Amyloid,Serum Amyloid P Component

Related Publications

R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
November 1995, The Journal of biological chemistry,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
March 1983, The Biochemical journal,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
March 1994, Journal of immunology (Baltimore, Md. : 1950),
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
December 1996, Journal of immunology (Baltimore, Md. : 1950),
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
July 2001, Journal of immunology (Baltimore, Md. : 1950),
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
July 1987, Biochemistry,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
January 1991, International journal of clinical & laboratory research,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
August 1999, Nature medicine,
R A Schwalbe, and B Dahlbäck, and G L Nelsestuen
June 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!