Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. 2011

J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA. mzrata01@louisville.edu

A population of CD133(+)Lin(-)CD45(-) very small embryonic/epiblast-like stem cells (VSELs) has been purified by multiparameter sorting from umbilical cord blood (UCB). To speed up isolation of these cells, we employed anti-CD133-conjugated paramagnetic beads followed by staining with Aldefluor to detect aldehyde dehydrogenase (ALDH) activity; we subsequently sorted CD45(-)/GlyA(-)/CD133(+)/ALDH(high) and CD45(-)/GlyA(-)/CD133(+)/ALDH(low) cells, which are enriched for VSELs, and CD45(+)/GlyA /CD133(+)/ALDH(high) and CD45(+)/GlyA(-)/CD133(+)/ALDH(low) cells, which are enriched for hematopoietic stem/progenitor cells (HSPCs). Although freshly isolated CD45(-) VSELs did not grow hematopoietic colonies, the same cells, when activated/expanded over OP9 stromal support, acquired hematopoietic potential and grew colonies composed of CD45(+) hematopoietic cells in methylcellulose cultures. We also observed that CD45(-)/GlyA(-)/CD133(+)/ALDH(high) VSELs grew colonies earlier than CD45(-)/GlyA(-)/CD133(+)/ALDH(low) VSELs, which suggests that the latter cells need more time to acquire hematopoietic commitment. In support of this possibility, real-time polymerase chain reaction analysis confirmed that, whereas freshly isolated CD45(-)/GlyA(-)/CD133(+)/ALDH(high) VSELs express more hematopoietic transcripts (for example, c-myb), CD45(-)/GlyA(-)/CD133(+)/ALDH(low) VSELs exhibit higher levels of pluripotent stem cell markers (for example, Oct-4). More importantly, hematopoietic cells derived from VSELs that were co-cultured over OP9 support were able to establish human lympho-hematopoietic chimerism in lethally irradiated non-obese diabetic/severe combined immunodeficiency mice 4-6 weeks after transplantation. Overall, our data suggest that UCB-VSELs correspond to the most primitive population of HSPCs in UCB.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071916 AC133 Antigen A member of the prominin family, AC133 Antigen is a 5-transmembrane antigen occurring as several isoforms produced by alternative splicing which are processed into mature forms. In humans, it is expressed as a subset of CD34 (bright) human hematopoietic stem cells and CD34 positive leukemias. Functionally, it is associated with roles in cell differentiation, proliferation, and apoptosis. Specifically, it regulates the organization of apical plasma membrane in epithelial cells, disk morphogenesis during early retinal development, MAPK and Akt signaling pathways, and in cholesterol metabolism. AC133-1 Antigen,AC133-2 Antigen,AC141 Antigen,CD133 Antigen,Fudenine,PROML1,Prominin,Prominin-1,Prominin-Like PROML1,AC133 1 Antigen,AC133 2 Antigen,Antigen, AC133,Antigen, AC133-1,Antigen, AC133-2,Antigen, AC141,Antigen, CD133,Prominin 1,Prominin Like PROML1
D000444 Aldehyde Dehydrogenase An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70. D-Glucuronolactone Dehydrogenase,Aldehyde Dehydrogenase (NAD(+)),Aldehyde Dehydrogenase E1,Aldehyde Dehydrogenase E2,Aldehyde-NAD Oxidoreductase,Aldehyde NAD Oxidoreductase,D Glucuronolactone Dehydrogenase,Dehydrogenase, Aldehyde,Dehydrogenase, D-Glucuronolactone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
September 2012, Stem cells and development,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 2012, PloS one,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
March 2012, Pediatric endocrinology reviews : PER,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 2005, Journal of hepato-biliary-pancreatic surgery,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
September 2023, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 2008, Folia histochemica et cytobiologica,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 2013, Advances in experimental medicine and biology,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 1998, Stem cells (Dayton, Ohio),
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
January 2006, Annals of clinical and laboratory science,
J Ratajczak, and E Zuba-Surma, and I Klich, and R Liu, and M Wysoczynski, and N Greco, and M Kucia, and M J Laughlin, and M Z Ratajczak
June 2010, Molecules and cells,
Copied contents to your clipboard!