Determining the mechanical properties of yeast cell walls. 2011

John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

The intrinsic cell wall mechanical properties of Baker's yeast (Saccharomyces cerevisiae) cells were determined. Force-deformation data from compression of individual cells up to failure were recorded, and these data were fitted by an analytical model to extract the elastic modulus of the cell wall and the initial stretch ratio of the cell. The cell wall was assumed to be homogeneous, isotropic, and incompressible. A linear elastic constitutive equation was assumed based on Hencky strains to accommodate the large stretches of the cell wall. Because of the high compression speed, water loss during compression could be assumed to be negligible. It was then possible to treat the initial stretch ratio and elastic modulus as adjustable parameters within the analytical model. As the experimental data fitted numerical simulations well up to the point of cell rupture, it was also possible to extract cell wall failure criteria. The mean cell wall properties for resuspended dried Baker's yeast were as follows: elastic modulus 185 ± 15 MPa, initial stretch ratio 1.039 ± 0.006, circumferential stress at failure 115 ± 5 MPa, circumferential strain at failure 0.46 ± 0.03, and strain energy per unit volume at failure 30 ± 3 MPa. Data on yeast cells obtained by this method and model should be useful in the design and optimization of cell disruption equipment for yeast cell processing.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D055119 Elastic Modulus Numerical expression indicating the measure of stiffness in a material. It is defined by the ratio of stress in a unit area of substance to the resulting deformation (strain). This allows the behavior of a material under load (such as bone) to be calculated. Young Modulus,Modulus of Elasticity,Young's Modulus,Elasticity Modulus,Modulus, Elastic,Modulus, Young,Modulus, Young's,Youngs Modulus

Related Publications

John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
January 1980, Symposia of the Society for Experimental Biology,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
January 1971, Mikrobiologiia,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
October 1999, Plant physiology,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
March 2015, Plants (Basel, Switzerland),
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
January 1974, Biofizika,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
January 2011, Plant physiology,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
November 1968, The Biochemical journal,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
September 2012, Nature protocols,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
January 1991, Journal of bacteriology,
John D Stenson, and Peter Hartley, and Changxiang Wang, and Colin R Thomas
March 1975, Sabouraudia,
Copied contents to your clipboard!