In vitro investigation of human UDP-glucuronosyltransferase isoforms responsible for tacrolimus glucuronidation: predominant contribution of UGT1A4. 2011

Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec, Canada.

Tacrolimus (Tacro) is a potent immunosuppressant and a central agent in the prevention of posttransplantation rejection. Tacro is characterized by a narrow therapeutic index and wide interindividual pharmacokinetic fluctuation. The contribution of human UDP-glucuronosyltransferase (UGT) in its metabolism has not been extensively studied. In vitro metabolism studies support that the liver produced Tacro-glucuronide (Tacro-G) while its formation was minimal or undetectable in the presence of intestine and kidney microsomes. Among 16 human UGTs tested, UGT1A4 was the sole enzyme involved in Tacro-G formation. This conclusion is supported by the finding of inhibition with a specific substrate of UGT1A4 lamotrigine with K(i) values similar for both human liver and UGT1A4 microsomes and the correlation with trifluoperazine-glucuronide formation by liver microsomes (r(s) = 0.551; p = 0.02). Formation of Tacro-G by liver samples varied among individuals (6.4-fold variation; n = 16), and common nonsynonymous variants may contribute to this variability. In the human embryonic kidney 293 cellular model, no significant differences in enzyme kinetics could be revealed for UGT1A4*2 (P(24)T) and *3 (L(48)V), whereas the allozyme *4 (R(11)W) displayed a 2-fold higher velocity (p < 0.01) compared with the UGT1A4*1 enzyme preparation. In human liver samples, carriers of the UGT1A4 variants did not display statistically different efficiency in Tacro-G formation compared with homozygote for the reference genotype UGT1A4*1/*1. We conclude that UGT1A4 is the major isoform involved in Tacro glucuronidation, whereas additional studies are required to assess the contribution of UGT1A4 genetic factors in tacrolimus glucuronidation variability.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D016559 Tacrolimus A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. Anhydrous Tacrolimus,FK-506,FK506,FR-900506,Prograf,Prograft,Tacrolimus Anhydrous,Anhydrous, Tacrolimus,FK 506,FR 900506,FR900506,Tacrolimus, Anhydrous
D020719 Glucuronides Glycosides of GLUCURONIC ACID formed by the reaction of URIDINE DIPHOSPHATE GLUCURONIC ACID with certain endogenous and exogenous substances. Their formation is important for the detoxification of drugs, steroid excretion and BILIRUBIN metabolism to a more water-soluble compound that can be eliminated in the URINE and BILE. Glucuronide
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
January 2009, Drug metabolism and pharmacokinetics,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
September 2014, Xenobiotica; the fate of foreign compounds in biological systems,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
January 2017, Frontiers in pharmacology,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
December 2008, Chemosphere,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
February 2012, Drug metabolism and disposition: the biological fate of chemicals,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
September 2011, Drug metabolism and disposition: the biological fate of chemicals,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
July 2007, Drug metabolism and disposition: the biological fate of chemicals,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
April 2004, Hepatology (Baltimore, Md.),
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
September 2012, Die Pharmazie,
Isabelle Laverdière, and Patrick Caron, and Mario Harvey, and Éric Lévesque, and Chantal Guillemette
July 2006, Pharmaceutical research,
Copied contents to your clipboard!