AV nodal dual pathway electrophysiology and Wenckebach periodicity. 2011

Youhua Zhang, and Todor N Mazgalev
Department of Molecular Cardiology and Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA. zhangy2@ccf.org

BACKGROUND The precise mechanism(s) governing the phenomenon of AV nodal Wenckebach periodicity is not fully elucidated. Currently 2 hypotheses, the decremental conduction and the Rosenbluethian step-delay, are most frequently used. We have provided new evidence that, in addition, dual pathway (DPW) electrophysiology is directly involved in the manifestation of AV nodal Wenckebach phenomenon. RESULTS AV nodal cellular action potentials (APs) were recorded from 6 rabbit AV node preparations during standard A1A2 and incremental pacing protocols. His electrogram alternans, a validated index of DPW electrophysiology, was used to monitor fast (FP) and slow (SP) pathway conduction. The data were collected in intact AV nodes, as well as after SP ablation. In all studied hearts the Wenckebach cycle started with FP propagation, followed by transition to SP until its ultimate block. During this process complex cellular APs were observed, with decremental foot formations reflecting the fading FP and second depolarizations produced by the SP. In addition, the AV node cells exhibited a progressive loss in maximal diastolic membrane potential (MDP) due to incomplete repolarization. The pause created with the blocked Wenckebach beat was associated with restoration of MDP and reinitiation of the conduction cycle via the FP wavefront. CONCLUSIONS DPW electrophysiology is dynamically involved in the development of AV nodal Wenckebach periodicity. In the intact AV node, the cycle starts with FP that is progressively weakened and then replaced by SP propagation, until block occurs. AV nodal SP modification did not eliminate Wenckebach periodicity but strongly affected its paradigm.

UI MeSH Term Description Entries
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012032 Refractory Period, Electrophysiological The period of time following the triggering of an ACTION POTENTIAL when the CELL MEMBRANE has changed to an unexcitable state and is gradually restored to the resting (excitable) state. During the absolute refractory period no other stimulus can trigger a response. This is followed by the relative refractory period during which the cell gradually becomes more excitable and the stronger impulse that is required to illicit a response gradually lessens to that required during the resting state. Period, Neurologic Refractory,Periods, Neurologic Refractory,Refractory Period, Neurologic,Tetanic Fade,Vvedenskii Inhibition,Wedensky Inhibition,Inhibition, Vvedenskii,Inhibition, Wedensky,Neurologic Refractory Period,Neurologic Refractory Periods,Neuromuscular Fade,Neuromuscular Transmission Fade,Refractory Period, Neurological,Refractory Periods, Neurologic,Electrophysiological Refractory Period,Electrophysiological Refractory Periods,Fade, Neuromuscular,Fade, Neuromuscular Transmission,Fade, Tetanic,Neurological Refractory Period,Neurological Refractory Periods,Refractory Periods, Electrophysiological,Refractory Periods, Neurological,Transmission Fade, Neuromuscular
D002304 Cardiac Pacing, Artificial Regulation of the rate of contraction of the heart muscles by an artificial pacemaker. Pacing, Cardiac, Artificial,Artificial Cardiac Pacing,Artificial Cardiac Pacings,Cardiac Pacings, Artificial,Pacing, Artificial Cardiac,Pacings, Artificial Cardiac
D006327 Heart Block Impaired conduction of cardiac impulse that can occur anywhere along the conduction pathway, such as between the SINOATRIAL NODE and the right atrium (SA block) or between atria and ventricles (AV block). Heart blocks can be classified by the duration, frequency, or completeness of conduction block. Reversibility depends on the degree of structural or functional defects. Auriculo-Ventricular Dissociation,A-V Dissociation,Atrioventricular Dissociation,A V Dissociation,A-V Dissociations,Atrioventricular Dissociations,Auriculo Ventricular Dissociation,Auriculo-Ventricular Dissociations,Block, Heart,Blocks, Heart,Dissociation, A-V,Dissociation, Atrioventricular,Dissociation, Auriculo-Ventricular,Dissociations, A-V,Dissociations, Atrioventricular,Dissociations, Auriculo-Ventricular,Heart Blocks
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001283 Atrioventricular Node A small nodular mass of specialized muscle fibers located in the interatrial septum near the opening of the coronary sinus. It gives rise to the atrioventricular bundle of the conduction system of the heart. AV Node,A-V Node,Atrio-Ventricular Node,A V Node,A-V Nodes,AV Nodes,Atrio Ventricular Node,Atrio-Ventricular Nodes,Atrioventricular Nodes,Node, A-V,Node, AV,Node, Atrio-Ventricular,Node, Atrioventricular,Nodes, A-V,Nodes, AV,Nodes, Atrio-Ventricular,Nodes, Atrioventricular
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017115 Catheter Ablation Removal of tissue with electrical current delivered via electrodes positioned at the distal end of a catheter. Energy sources are commonly direct current (DC-shock) or alternating current at radiofrequencies (usually 750 kHz). The technique is used most often to ablate the AV junction and/or accessory pathways in order to interrupt AV conduction and produce AV block in the treatment of various tachyarrhythmias. Ablation, Transvenous Electric,Catheter Ablation, Electric,Catheter Ablation, Percutaneous,Catheter Ablation, Radiofrequency,Catheter Ablation, Transvenous,Ablation, Catheter,Ablation, Transvenous Electrical,Catheter Ablation, Electrical,Electric Catheter Ablation,Electrical Catheter Ablation,Percutaneous Catheter Ablation,Radiofrequency Catheter Ablation,Transvenous Catheter Ablation,Ablation, Electric Catheter,Ablation, Electrical Catheter,Ablation, Percutaneous Catheter,Ablation, Radiofrequency Catheter,Ablation, Transvenous Catheter,Electric Ablation, Transvenous,Electrical Ablation, Transvenous,Transvenous Electric Ablation,Transvenous Electrical Ablation

Related Publications

Youhua Zhang, and Todor N Mazgalev
July 1981, Journal of electrocardiology,
Youhua Zhang, and Todor N Mazgalev
December 1989, Pacing and clinical electrophysiology : PACE,
Youhua Zhang, and Todor N Mazgalev
January 2024, Journal of electrocardiology,
Youhua Zhang, and Todor N Mazgalev
December 1978, British heart journal,
Youhua Zhang, and Todor N Mazgalev
July 2003, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
Youhua Zhang, and Todor N Mazgalev
January 1984, The Indian journal of chest diseases & allied sciences,
Youhua Zhang, and Todor N Mazgalev
November 1995, Circulation,
Youhua Zhang, and Todor N Mazgalev
May 1981, American heart journal,
Youhua Zhang, and Todor N Mazgalev
January 2002, The American journal of geriatric cardiology,
Copied contents to your clipboard!