Leukotriene B4 receptor-1 mediates intermittent hypoxia-induced atherogenesis. 2011

Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA. rcli@uchicago.edu

BACKGROUND Obstructive sleep apnea, which is characterized by intermittent hypoxia (IH) during sleep, has emerged as an independent risk factor for cardiovascular disease, including atherosclerosis. Leukotriene B4 (LTB4) production is increased in patients with obstructive sleep apnea and negatively correlates to hypoxic levels during sleep, with continuous positive airway pressure therapy decreasing LTB4 production. OBJECTIVE Determine the potential role of LTB4 in IH-induced atherosclerosis in a monocyte cellular model and a murine model. METHODS THP-1 cells were exposed to IH for 3, 6, 24, and 48 hours. Macrophage transformation and foam cell formation were assessed after IH exposures. Apolipopotein E (ApoE)(-/-) or BLT1(-/-)/ApoE(-/-) mice were fed an atherogenic diet and exposed to IH (alternating 21% and 5.7% O(2) from 7 am to 7 PM each day) for 10 weeks. Atherosclerotic lesion formation in en face aorta was examined by oil red O staining. RESULTS IH increased production of LTB4 and the expression of 5-lipoxygenase and leukotriene A4 hydrolase, the key enzymes for producing LTB4. IH was associated with transformation of monocytes to activated macrophages, as evidenced by increased expression of CD14 and CD68. In addition, IH exposures promoted increased cellular cholesterol accumulation and foam cell formation. The LTB4 receptor 1 (BLT1) antagonist U-75302 markedly attenuated IH-induced changes. Furthermore, IH promoted atherosclerotic lesion formation in ApoE(-/-) mice. IH-induced lesion formation was markedly attenuated in BLT1(-/-)/ApoE(-/-) mice. CONCLUSIONS BLT1-dependent pathways underlie IH-induced atherogenesis, and may become a potential novel therapeutic target for obstructive sleep apnea-associated cardiovascular disease.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001057 Apolipoproteins E A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III. Apo-E,Apo E,Apo E Isoproteins,ApoE,Apolipoprotein E Isoproteins,Apoprotein (E),Apoproteins E,Isoproteins, Apo E,Isoproteins, Apolipoprotein E
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D050197 Atherosclerosis A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA. Atherogenesis,Atherogeneses,Atheroscleroses
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018102 Receptors, Leukotriene B4 A class of cell surface leukotriene receptors with a preference for leukotriene B4. Leukotriene B4 receptor activation influences chemotaxis, chemokinesis, adherence, enzyme release, oxidative bursts, and degranulation in polymorphonuclear leukocytes. There are at least two subtypes of these receptors. Some actions are mediated through the inositol phosphate and diacylglycerol second messenger systems. LTB4 Receptors,Leukotriene B4 Receptors,LTB4 Receptor,Leukotriene B4 Receptor,Receptor, LTB4,Receptor, Leukotriene B4,Receptors, LTB4

Related Publications

Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
June 2011, Journal of immunology (Baltimore, Md. : 1950),
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
August 2018, Science signaling,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
October 2003, Nature immunology,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
July 2005, American journal of respiratory and critical care medicine,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
October 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
March 2022, Nature communications,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
June 1997, Nature,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
October 1989, Inflammation,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
June 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Richard C Li, and Bodduluri Haribabu, and Steven P Mathis, and Jinkwan Kim, and David Gozal
July 2017, Kidney international,
Copied contents to your clipboard!