Regulation of lipopolysaccharide-induced translation of tumor necrosis factor-alpha by the toll-like receptor 4 adaptor protein TRAM. 2011

Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital, Charlestown, Mass., USA.

Lipopolysaccharide (LPS)-induced production of tumor necrosis factor (TNF)-α requires the recruitment of two pairs of adaptors to the Toll-like receptor 4 cytoplasmic domain. The contribution of one pair - Toll-interleukin-1 receptor domain-containing adaptor inducing interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM) - to TNF-α expression is not well understood. To clarify this issue, we studied TRAM knockout bone marrow-derived macrophages (BMDM). LPS-stimulated TRAM-deficient BMDM had decreased TNF-α protein expression even at times when TNF-α mRNA levels were normal, suggesting impaired translation. Consistent with this idea, knockdown of TRAM in RAW264.7 macrophages decreased translation of a reporter controlled by the TNF-α 3' untranslated region, while transfection of TRAM in HEK293T cells increased translation of this reporter. Also consistent with a role for TRAM in TNF-α translation, LPS-induced activation of MK2, a kinase involved in this process, was impaired in TRAM-deficient BMDM. TRIF did not increase translation of the TNF-α 3' untranslated region reporter when expressed in HEK293T cells. However, BMDM that lacked functional TRIF produced reduced levels of TNF-α protein in response to LPS despite normal amounts of the mRNA. Unlike BMDM, LPS-stimulated TRAM-deficient peritoneal macrophages displayed equivalent reductions in TNF-α protein and mRNA. Our results indicate that TRAM- and TRIF-dependent signals have a previously unappreciated, cell type-specific role in regulating TNF-α translation.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular

Related Publications

Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
January 2006, Blood,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
January 2020, The Chinese journal of physiology,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
September 2003, Shock (Augusta, Ga.),
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
January 2014, Frontiers in immunology,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
January 2015, Neuroscience letters,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
November 2008, Journal of agricultural and food chemistry,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
October 2004, Immunology,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
April 1999, The Journal of biological chemistry,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
February 2017, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Lijian Wang, and Estela Trebicka, and Ying Fu, and Lisa Waggoner, and Shizuo Akira, and Katherine A Fitzgerald, and Jonathan C Kagan, and Bobby J Cherayil
January 2016, BMC musculoskeletal disorders,
Copied contents to your clipboard!