Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. 2011

Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.

1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin for inducing a cell model of Parkinson's disease. This study aimed to evaluate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, on MPP+-induced cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. The results from the MTT and lactate dehydrogenase (LDH) assays showed that incubating cells with 500 μM MPP+ for 24 h decreased cell viability and increased LDH leakage, whereas preincubating cells with 3.125 to 50 μM TSG for 24 h protected the cells against MPP+-induced cell damage. Using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and rhodamine 123, respectively, we found that TSG inhibited both the elevation of intracellular reactive oxygen species and the disruption of mitochondrial membrane potential induced by MPP+. In addition, TSG suppressed both the upregulation of the ratio of Bax to Bcl-2 and the activation of caspase-3 induced by MPP+, and TSG inhibited apoptosis as detected by flow cytometric analysis using Annexin-V and propidium (PI) label. These results suggest that TSG may protect neurons against MPP+-induced cell death through improving mitochondrial function, decreasing oxidative stress and inhibiting apoptosis, and this may provide a potentially new strategy for preventing and treating neurodegenerative disorders such as Parkinson's disease.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005960 Glucosides A GLYCOSIDE that is derived from GLUCOSE. Glucoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D015655 1-Methyl-4-phenylpyridinium An active neurotoxic metabolite of 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE. The compound reduces dopamine levels, inhibits the biosynthesis of catecholamines, depletes cardiac norepinephrine and inactivates tyrosine hydroxylase. These and other toxic effects lead to cessation of oxidative phosphorylation, ATP depletion, and cell death. The compound, which is related to PARAQUAT, has also been used as an herbicide. Cyperquat,1-Methyl-4-phenylpyridine,1-Methyl-4-phenylpyridinium Chloride,1-Methyl-4-phenylpyridinium Ion,N-Methyl-4-phenylpyridine,N-Methyl-4-phenylpyridinium,1 Methyl 4 phenylpyridine,1 Methyl 4 phenylpyridinium,1 Methyl 4 phenylpyridinium Chloride,1 Methyl 4 phenylpyridinium Ion,N Methyl 4 phenylpyridine
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
May 2006, Biochemical and biophysical research communications,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
February 2005, Neuroscience research,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
December 2009, Journal of ethnopharmacology,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
August 2006, Biochemical pharmacology,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
February 2006, Biochemical and biophysical research communications,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
July 1998, The Journal of toxicological sciences,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
September 2016, Biochemical and biophysical research communications,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
February 2007, Journal of the neurological sciences,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
August 2013, Neurochemical research,
Fang-ling Sun, and Lan Zhang, and Ru-yi Zhang, and Lin Li
February 2015, Molecular medicine reports,
Copied contents to your clipboard!