Activation by lithium ions of the inside sodium sites in (Na+ + K+)-ATPase. 1978

L Beaugé

1. Purified pig kidney ATPase was incubated in 30--160 mM Tris-HCl with various monovalent cations. 130 mM LiCl stimulated a ouabain-sensitive ATP hydrolysis (about 5% of the maximal (Na+ + K) activity), whereas 160 mM Tris-HCl did not stimulate hydrolysis. Similar results were obtained with human red blood cell broken membranes. 2. In the absence of Na+ and with 130 mM LiCl, the ATPase activity as a function of KCl concentration showed an initial slight inhibition (50 micrometer KCl) followed by an activation (maximal at 0.2 mM KCl) and a further inhibition, which was total at mM KCl. In the absence of LiCl, the rate of hydrolysis was not affected by any of the KCl concentrations investigated. 3. The lithium-activation curve for ATPase activity in the absence of both Na+ and K+ had sigmoid characteristics. It also showed a marked dependence on the total LiCl + Tris-HCl concentration, being inhibited at high concentrations. This inhibition was more noticeable at low LiCl concentrations. 4. In the absence of Na+, 130 mM Li+ showed promoted phosphorylation of ATPase from 1 to 3 mM ATP in the presence of Mg2+. In enzyme treated with N-ethylmaleimide, the levels of phosphorylation in Li+-containing solutions, amounted to 40% of those in Na+- and up to 7 times of those in K+-containing solutions. 5. The total (Na+ + K+)-ATPase activity was markedly inhibited at high buffer concentrations (Tris-HCl, Imidazole-HCl and tetramethylammonium-HEPES gave similar results) in cases when either the concentration of Na+ or K+ (or both) was below saturation. On the other hand, the maximal (Na+ + K+)-ATPase activity was not affected (or very slightly) by the buffer concentration. 6. Under standard conditions (Tris-HCl + NaCl = 160 mM) the Na+-activation curve of Na+-ATPase had a steep rise between 0 and 2.5 mM, a fall between 2.5 and 20 mM and a further increase between 20 and 130 mM. With 30 mM Tris-HCl, the curve rose more steeply, inhibition was noticeable at 2.5 mM Na+ and was completed at 5 mM Na+. With Tris-HCl + NaCl = 280 mM, the amount of activation decreased and inhibition at intermediate Na+ concentrations was not detected.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

L Beaugé
June 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
L Beaugé
January 2000, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
L Beaugé
June 1977, Biochimica et biophysica acta,
L Beaugé
February 2017, Biochemistry,
L Beaugé
January 1981, Ukrainskii biokhimicheskii zhurnal (1978),
Copied contents to your clipboard!