Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats. 2011

Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
Ophthalmological Hospital of Xingtai, Xingtai 054001, China.

BACKGROUND Ginkgo biloba leaves are traditionally used in China for its health-promoting properties. There is substantial experimental evidence to support the view that Ginkgo biloba extracts have neuroprotective properties under conditions such as hypoxia/ischemia. Although a number of studies have investigated that ginkgolide B, a purified terpene lactone component extracted from Ginkgo biloba leaves, is available "platelet activating factor (PAF) receptors antagonist", "antioxidant" with a variety of actions, very little has been performed to explore the effect of ginkgolide B on extracellular amino acids in experimental animal of focal cerebral ischemia/reperfusion. In this study, the effect of ginkgolide B on the striatal extracellular levels of glutamate (Glu), aspartic acid (Asp), glycine (Gly) and γ-aminobutyric acid (GABA) was evaluated in rats undergone middle cerebral artery occlusion (MCAO) for 1h followed by 23 h reperfusion. METHODS The Sprague-Dawley (SD) rats received intraperitoneal injections of ginkgolide B dissolved at a dose of 10 mg kg(-1)d(-1), 20 mg kg(-1)d(-1), or normal saline (NS) of same volume 3d before the middle cerebral artery occlusion model establishment. Extracellular concentrations of glutamate, aspartic acid, glycine and GABA in striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Excitotoxic index (EI) was calculated. Twenty-four hours after MCAO, the cerebral infarct volume was detected on 2,3,5-triphenyltetrazolium chloride-stained coronal sections. RESULTS The result showed that administration of ginkgolide B (10 or 20 mg kg(-1)) before ischemia reduced the ischemia-induced elevation of levels of glutamate, aspartic acid and glycine, increased the elevation of extracellular GABA, decreased the excitotoxic index and diminished the volume of cerebral infarction, although a clear concentration-response relationship was not found. CONCLUSIONS The present work provides the first evidence that ginkgolide B protects against cerebral ischemic injury by inhibiting excitotoxicity by modulating the imbalance of excitatory amino acids versus inhibitory amino acids, which may support the traditional use of Ginkgo biloba leaves for the treatment of stroke.

UI MeSH Term Description Entries
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D008297 Male Males
D008517 Phytotherapy Use of plants or herbs to treat diseases or to alleviate pain. Herb Therapy,Herbal Therapy
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
April 1992, Stroke,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
April 2014, Brain research,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
April 1996, Brain research,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
September 2009, Journal of ethnopharmacology,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
February 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
March 2013, High altitude medicine & biology,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
February 2015, Neuroscience letters,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
May 1991, European journal of pharmacology,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
January 1982, Journal of neural transmission,
Zan Zhang Yang, and Jing Li, and Shan Xue Li, and Wei Feng, and Hao Wang
November 2010, Stroke,
Copied contents to your clipboard!