IL-4 inhibits superoxide production by human mononuclear phagocytes. 1990

S L Abramson, and J I Gallin
Bacterial Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.

The activation of mononuclear phagocytes (M phi) and their generation of oxidative products is influenced by various cytokines as well as by normal maturational changes. We examined the effects of IL-4 on superoxide (O2-) production (cytochrome c reduction) by cultured M phi and the modulation of these effects by IFN-gamma and IL-1. Incubation of IL-4 (200 U/ml) with M phi inhibited M phi PMA (100 ng/ml)-stimulated O2-. production by 23% at 24 h, 34% at 48 h, and 70 to 85% at 72 to 96 h. IL-4 similarly inhibited M phi O2-. production in response to zymosan. IL-4 did not affect M phi viability, adherence to microtiter plates, or ability to phagocytose boiled yeast. In comparison with M phi, neutrophil O2-. production was not inhibited after 4 to 20 h incubation with IL-4. When IL-4 was washed out as early as 1 h after the initiation of M phi culture, significant inhibition of O2-. production was observed 4 days later. Sequential addition of either IL-4 or IFN-gamma to cultures demonstrated reciprocal cytokine effects on M phi; IL-4 partially inhibited O2-. production by M phi previously treated with rIFN-gamma whereas rIFN-gamma partially augmented O2-. production by M phi previously treated with IL-4. Because IL-4 has been reported to inhibit IL-1 production, add-back experiments were performed; addition of IL-1 only partly reconstituted O2-. production in IL-4-treated cells. Further characterization showed that although M phi protein synthesis was enhanced by both rIFN-gamma and IL-4 treatment, acid phosphatase, a marker of maturation to the macrophage phenotype, was markedly increased at an earlier time point in IL-4-treated M phi, and correlated with a decline in O2-. production. The ability of IL-4 to suppress M phi O2-. production implicates IL-4 as an important regulator of this aspect of the inflammatory response.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010586 Phagocytes Cells that can carry out the process of PHAGOCYTOSIS. Phagocyte,Phagocytic Cell,Phagocytic Cells,Cell, Phagocytic,Cells, Phagocytic
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

S L Abramson, and J I Gallin
November 1995, The Journal of clinical investigation,
S L Abramson, and J I Gallin
January 1988, Acta paediatrica Hungarica,
S L Abramson, and J I Gallin
January 2003, Advances in experimental medicine and biology,
S L Abramson, and J I Gallin
January 1996, Inflammatory bowel diseases,
S L Abramson, and J I Gallin
March 2002, The Journal of pharmacology and experimental therapeutics,
S L Abramson, and J I Gallin
January 1991, Journal of immunology (Baltimore, Md. : 1950),
S L Abramson, and J I Gallin
May 2001, Trends in immunology,
S L Abramson, and J I Gallin
May 1996, Clinical and experimental immunology,
Copied contents to your clipboard!