Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex. 1990

K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
Department of Neurobiology, Stanford University School of Medicine, CA 94305.

Nerve growth factor and its receptor (NGFR) are known to be present in diverse embryonic and neonatal central nervous system tissues, including the cerebral cortex. However, the identity of the cortical cells expressing NGFR immunoreactivity has not been established. We have used immunolabeling coupled with [3H]thymidine autoradiography to identify such cells in ferret and cat brain. Polyclonal antibodies raised against a synthetic peptide corresponding to a conserved amino acid sequence of the NGFR were used for this purpose. Western (immunologic) blot analyses show that these antibodies specifically recognize NGFR and precursor proteins. In both species, NGFR immunoreactivity is primarily associated with the early generated and transient subplate neuron population of the developing neocortex, as indicated by the following evidence: the immunoreactive cells (i) are located directly beneath the developing cortical plate, (ii) frequently have the inverted pyramid shape characteristic of subplate neurons, and (iii) can be labeled by an injection of [3H]thymidine on embryonic day (E) 28, a time when only subplate neurons are being generated. Intense NGFR immunostaining is seen on the cell bodies of these neurons as early as E30, several days after their last round of cell division, and this immunostaining remains strong for approximately 3 weeks. The NGFR immunoreactivity begins to decline around E52 and has disappeared from the region altogether by E60, at which time subplate neurons begin to die. The cellular localization and timing of expression suggest that the NGFR may play a role in the maintenance of subplate neurons and in the maturation of the cerebral cortex.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
May 1991, Brain research,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
September 1992, The Journal of comparative neurology,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
September 1989, Science (New York, N.Y.),
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
March 1988, The Journal of cell biology,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
January 1989, Neuroscience,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
August 2009, Cerebral cortex (New York, N.Y. : 1991),
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
July 2008, Journal of neuropathology and experimental neurology,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
January 1989, Brain research,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
February 1985, Neuropeptides,
K L Allendoerfer, and D L Shelton, and E M Shooter, and C J Shatz
January 2001, Cancer investigation,
Copied contents to your clipboard!