Development and characterization of transgenic mouse models for conditional gene knockout in the blood-brain and blood-CSF barriers. 2012

Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
Department of Pharmaceutics, University of Washington, Box 357610, Seattle, WA 98195-7610, USA.

For many CNS acting drugs, penetration into the central nervous system (CNS) is limited by the blood-CNS-barriers. In an effort to quantitate the role of the protein components that make up the blood-CNS-barriers, we created transgenic mice that allow conditional gene knockout using Cre/loxP technology. We targeted the expression of Cre-recombinase to the choroid plexus (the blood-cerebral spinal fluid barrier) using the lymphotropic papovavirus control region (LPVcr) and to brain endothelium (the blood-brain-barrier) using the proximal promoter region of the human von Willebrand Factor gene (hVWF-f). We verified that LPVcr restricts expression to the choroid plexus in adult mice by using the LPVcr to drive n-LacZ expression in transgenic mice. The LPV-Cre and hVWF-Cre plasmids were then constructed and tested for Cre-recombinase function in vitro, and subsequently used to create transgenic mice. The resulting transgenic mice were characterized for cell-type specific Cre-mediated endonuclease activity by crossing them with transgenic mice containing a loxP-flanked-LacZ/EGFP dual reporter gene Z/EG. The dual Cre-Z/EG transgenic offspring were evaluated for the location of EGFP mRNA expression by reverse transcriptase PCR and for protein expression by immunohistochemistry. Immunohistochemistry for EGFP verified expression in the target cells, and no ectopic expression outside of the expected cell types. The LPV-Cre.0607 transgenic line expressed functional Cre only in the choroid plexus and hVWF-Cre.1304 line in brain endothelium.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002555 Cerebrospinal Fluid A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES. Cerebro Spinal Fluid,Cerebro Spinal Fluids,Cerebrospinal Fluids,Fluid, Cerebro Spinal,Fluid, Cerebrospinal,Fluids, Cerebro Spinal,Fluids, Cerebrospinal,Spinal Fluid, Cerebro,Spinal Fluids, Cerebro
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
December 2014, Cold Spring Harbor protocols,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
January 1986, Neuropathology and applied neurobiology,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
March 2015, Seminars in cell & developmental biology,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
July 2001, Brain pathology (Zurich, Switzerland),
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
January 2009, Progress in brain research,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
April 2012, Transgenic research,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
September 2021, Journal of applied physiology (Bethesda, Md. : 1985),
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
May 2002, Cardiovascular research,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
November 2023, bioRxiv : the preprint server for biology,
Matthew H Crouthamel, and Edward J Kelly, and Rodney J Y Ho
May 2001, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!