Modification by lidocaine of the discharges of primary endings of muscle spindles in cat tenuissimus muscle. 1979

H E Lowndes, and B Pagès, and P Bessou

The effects of lidocaine (1--20 microgram/ml) on afferent discharge patterns of primary endings of muscle spindles in cat tenuissimus muscle were investigated. Discharge from the endings, recorded in Ia afferent axons, was evoked by ramp stretch of the muscle, stimulation of single static or dynamic fusimotor axons or by a combination of stretch and fusimotor stimulation. Spontaneous discharge of the endings at the initial length of the muscles was reduced by 2--5 microgram/ml and abolished by 10--15 microgram/ml lidocaine. The static but not the dynamic discharge elicited by muscle stretch was blocked by concentrations of 10--15 microgram/ml. The same concentrations abolished static and dynamic fusimotor influences on primary ending discharge. However, in one experiment where the spindle was microscopically observed, fusimotor stimulation still resulted in contraction of the intrafusal muscle even when fusimotor stimulation failed to elicit changes in discharge response patterns of the primary endings. These findings indicate that lidocaine interferes with the encoding mechanism prior to block of impulse conduction in either the fusimotor or afferent axons.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D009047 Motor Neurons, Gamma Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length. Neurons, Fusimotor,Neurons, Gamma Motor,Gamma Motorneurons,Motor Neurons, Gamma-Efferent,Fusimotor Neuron,Fusimotor Neurons,Gamma Motor Neuron,Gamma Motor Neurons,Gamma Motorneuron,Gamma-Efferent Motor Neuron,Gamma-Efferent Motor Neurons,Motor Neuron, Gamma,Motor Neuron, Gamma-Efferent,Motor Neurons, Gamma Efferent,Motorneuron, Gamma,Motorneurons, Gamma,Neuron, Fusimotor,Neuron, Gamma Motor,Neuron, Gamma-Efferent Motor,Neurons, Gamma-Efferent Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H E Lowndes, and B Pagès, and P Bessou
January 1986, Cell and tissue research,
H E Lowndes, and B Pagès, and P Bessou
February 1982, Journal of morphology,
H E Lowndes, and B Pagès, and P Bessou
January 1982, Histochemistry,
H E Lowndes, and B Pagès, and P Bessou
January 1983, Histochemistry,
H E Lowndes, and B Pagès, and P Bessou
January 1963, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
H E Lowndes, and B Pagès, and P Bessou
January 1991, Experimental brain research,
H E Lowndes, and B Pagès, and P Bessou
June 1980, Developmental biology,
H E Lowndes, and B Pagès, and P Bessou
January 2000, Brain research,
H E Lowndes, and B Pagès, and P Bessou
September 1970, Experimental neurology,
Copied contents to your clipboard!