Synaptic aging as revealed by changes in membrane potential and decreased activity of Na+,K(+)-ATPase. 1990

Y Tanaka, and S Ando
Department of Biochemistry, Tokyo Metropolitan Institute of Gerontology, Japan.

Age-related changes in the membrane potential of nerve terminals were investigated by monitoring the accumulation of tritium-labeled triphenylmethylphosphonium ion, [3H]TPMP+, in mouse cortical synaptosomes. The resting membrane potential became less negative with advancing age, that is, it changed from -64.5 +/- 0.8 to -58.1 +/- 2.3 mV between 6 and 27 months of age. The intrasynaptosomal potassium concentration was found to decrease concomitantly by 13% in aged mice (56.6 +/- 0.9 mM) as compared to young-adult mice (64.9 +/- 0.5 mM). The ouabain-sensitive Na+,K(+)-ATPase activity of synaptic plasma membranes decreased in late senescence to 82% of the adult level. To examine the correlation with the decreased Na+,K(+)-ATPase activity, the membrane lipid composition was analyzed. Among the membrane phospholipids, only the content of phosphatidylcholine decreased in the course of senescence. The changes in the Na+,K(+)-ATPase activity were found to be positively correlated with the changes in the phospholipid content, and more specifically with the changes in the phosphatidyl-choline content. These results suggest that age-related alterations in the microenvironment constructed by phospholipids may decrease the activity of Na+,K+-ATPase, resulting in neuronal ion imbalance and decreased membrane potential. This might be responsible in part for altered functions of nerve terminals in aging brain.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009861 Onium Compounds Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+ Compounds, Onium
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005260 Female Females
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

Y Tanaka, and S Ando
March 1979, The Journal of membrane biology,
Y Tanaka, and S Ando
June 1979, The Journal of membrane biology,
Y Tanaka, and S Ando
May 2013, Applied biochemistry and biotechnology,
Y Tanaka, and S Ando
January 1987, Scandinavian journal of rheumatology,
Y Tanaka, and S Ando
June 2014, International journal of biomedical science : IJBS,
Y Tanaka, and S Ando
December 1982, Digestive diseases and sciences,
Y Tanaka, and S Ando
January 1999, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Y Tanaka, and S Ando
January 1992, Neurochemistry international,
Y Tanaka, and S Ando
August 1984, Israel journal of medical sciences,
Copied contents to your clipboard!