Direct inhibitory synaptic linkage of pontomedullary reticular burst neurons with abducens motoneurons in the cat. 1978

O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu

1. Unit spikes of burst neurons were extracellularly recorded in the pontomedullary reticular formation of the cat. These neurons were identified by their burst activity coincident with the quick inhibitory phase of the contralateral abducens nerve during vestibular nystagmus and their antidromic activation from the contralateral abducens nucleus. 2. When the extracellular field potentials in and near the abducens nucleus were triggered by spikes of a contralateral burs neuron, the averaged potential consisted of an early di- or triphasic spike and a late slow positive wave. The early spike was an action current caused by impulses conducting along the axon of the burst neuron. 3. The action potentials of a contralateral burst neuron. 3. The action potentials of a contralateral burst neuron were employed to trigger a post-spike average of the membrane potential of abducens motoneurons. Then unitary IPSPs with monosynaptic latencies were revealed. This provided direct evidence that the burst neurons are inhibitory in nature. The amplitudes of unitary IPSPs ranged from 18 to 220 mu V. Each inhibitory burst neuron branched widely in the abducens nucleus and was estimated to make inhibitory connections with approximately 60% of the motoneuron pool. 4. The post-spike average of compound potentials of the abducens nerve triggered by action potentials of contralateral single inhibitory burst neurons revealed inhibition of spike activity with latencies and time courses compatible with those of unitary IPSPs in motoneurons. The inhibition was observed with all inhibitory burst neurons tested.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric

Related Publications

O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
January 1980, Experimental brain research,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
August 1982, Brain research,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
March 1976, Brain research,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
May 1992, Annals of the New York Academy of Sciences,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
October 2003, Journal of neurophysiology,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
August 1976, Brain research,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
February 1984, Experimental neurology,
O Hikosaka, and Y Igusa, and S Nakao, and H Shimazu
January 1993, Acta oto-laryngologica,
Copied contents to your clipboard!