Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. 2011
BACKGROUND Accurate classification of multiple sclerosis (MS) lesions in the brain cortex may be important in understanding their impact on cognitive impairment (CI). Improved accuracy in identification/classification of cortical lesions was demonstrated in a study combining two magnetic resonance imaging (MRI) sequences: double inversion recovery (DIR) and T1-weighted phase-sensitive inversion recovery (PSIR). OBJECTIVE To evaluate the role of intracortical lesions (IC) in MS-related CI and compare it with the role of mixed (MX), juxtacortical (JX), the sum of IC + MX and with total lesions as detected on DIR/PSIR images. Correlations between CI and brain atrophy, disease severity and disease duration were also sought. METHODS A total of 39 patients underwent extensive neuropsychological testing and were classified into normal and impaired groups. Images were obtained on a 3T scanner and cortical lesions were assessed blind to the cognitive status of the subjects. RESULTS Some 238 cortical lesions were identified (130 IC, 108 MX) in 82% of the patients; 39 JX lesions were also identified. Correlations between CI and MX lesions alone (p = 0.010) and with the sum of IC + MX lesions (p = 0.030) were found. A correlation between severity of CI and Expanded Disability Status Scale was also seen (p = 0.009). CONCLUSIONS Cortical lesions play an important role in CI. However, our results suggest that lesions that remain contained within the cortical ribbon do not play a more important role than ones extending into the adjacent white matter; furthermore, the size of the cortical lesion, and not the tissue-specific location, may better explain their correlation with CI.