Germ-line and somatic recombination induced by in vitro modified P elements in Drosophila melanogaster. 1990

J A Sved, and W B Eggleston, and W R Engels
School of Biological Sciences, Sydney University, New South Wales, Australia.

The P element insertion delta 2-3(99B) has previously been shown to activate incomplete P elements elsewhere in the genome. We show that this element, in conjunction with a second incomplete P element, P[CaSpeR], also induces recombination in the male germ line. The recombination is induced preferentially in the region of the P[CaSpeR] element. Recombinant chromosomes contain the P[CaSpeR] element in more than 50% of cases, and alternative models of transposon replication and preferential chromosome breakage are put forward to explain this finding. As is the case with male recombination induced by P-M dysgenic crosses, recombination appears to be premeiotic in a high proportion of cases. The delta 2-3(99B) element is known to act in somatic cells. Correspondingly, we show that the delta 2-3(99B)-P[CaSpeR] combination elevates the incidence of somatic recombination.

UI MeSH Term Description Entries
D008297 Male Males
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019895 Transposases Enzymes that recombine DNA segments by a process which involves the formation of a synapse between two DNA helices, the cleavage of single strands from each DNA helix and the ligation of a DNA strand from one DNA helix to the other. The resulting DNA structure is called a Holliday junction which can be resolved by DNA REPLICATION or by HOLLIDAY JUNCTION RESOLVASES. Transposase

Related Publications

J A Sved, and W B Eggleston, and W R Engels
March 1991, Molecular & general genetics : MGG,
J A Sved, and W B Eggleston, and W R Engels
February 1990, Mutation research,
J A Sved, and W B Eggleston, and W R Engels
July 1990, Molecular & general genetics : MGG,
J A Sved, and W B Eggleston, and W R Engels
February 1990, Genetics,
J A Sved, and W B Eggleston, and W R Engels
February 1995, Molecular & general genetics : MGG,
J A Sved, and W B Eggleston, and W R Engels
December 1989, Genetics,
J A Sved, and W B Eggleston, and W R Engels
September 1976, Mutation research,
J A Sved, and W B Eggleston, and W R Engels
January 1984, Environmental mutagenesis,
Copied contents to your clipboard!