Isolation of Rhizobium phaseoli Tn5-induced mutants with altered expression of cytochrome terminal oxidases o and aa3. 1990

M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.

Two Rhizobium phaseoli mutants affected in cytochrome expression were obtained by Tn5-mob mutagenesis of the wild-type strain (CE3). Mutant strain CFN031 expressed sevenfold less cytochrome o in culture, expressed cytochrome aa3 under microaerophilic culture conditions, in contrast to strain CE3, and was affected in its vegetative growth properties and proliferation inside plant host cells. Mutant CFN037 expressed cytochrome aa3 under microaerophilic culture conditions, while bacteroid development and nitrogen fixation occurred earlier than in strain CE3.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.

Related Publications

M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
April 1984, Journal of bacteriology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
August 1998, FEMS microbiology letters,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
June 1973, FEBS letters,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
April 1985, Journal of bacteriology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
October 1973, Nature: New biology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
January 1989, Journal of bacteriology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
February 1985, Journal of bacteriology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
June 1989, Plant physiology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
August 1991, Molecular microbiology,
M Soberón, and J Membrillo-Hernández, and G R Aguilar, and F Sánchez
December 1983, Journal of bacteriology,
Copied contents to your clipboard!