Preliminary characterization of phosphotyrosine phosphatase activities in human peripheral blood lymphocytes: identification of CD45 as a phosphotyrosine phosphatase. 1990

R J George, and C W Parker
Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

A preliminary characterization of the protein phosphotyrosine phosphatase (PTPase) activity in human peripheral blood lymphocytes (PBL) has been made using two tyrosine-containing peptides and the epidermal growth factor receptor from A-431 cells as substrates. High PTPase activity with a pH optimum near 7.4 was observed in both the membrane and the cytosolic fractions. At least three distinct fractions with PTPase activity were separated on DEAE cellulose columns, indicating that the enzyme is heterogeneous. Vanadate, molybdate, and salts of zinc, copper, and mercury were all effective enzyme inhibitors, although the inhibition was generally incomplete and showed some variation with the enzyme preparation. The difficulty in completely inhibiting PTPase activity in lymphocytes may help explain the variation between laboratories in studies of tyrosine phosphorylation in these cells. Studies with highly purified T lymphocytes obtained by filtration of PBL through nylon wool columns indicated that the activity is present in T cells. Absorption with agarose containing anti-HLe-1, a mouse monoclonal IgG1 antibody specific for the leukocyte-specific surface protein T-200 (CD45), removed up to 40% of the PTPase activity. Enzyme activity was recovered on the immunoadsorbent after extensive washing, confirming that the enzyme was being bound to the beads. Immunoabsorbents containing other mouse IgG1 antibodies failed to bind PTPase activity, indicating that the binding to beads with anti-HLe-1 antibody is specific. Further characterization of the CD45 and PTPase activities in lymphocytes may provide a better understanding of the role of protein tyrosine phosphorylation in the regulation of proliferation and differentiation in these cells.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D017493 Leukocyte Common Antigens High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain two FIBRONECTIN TYPE III DOMAINS and possess cytoplasmic protein tyrosine phosphatase activity, which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. Leukocyte common antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons. Antigens, CD45,CD45 Antigens,CD45R Antigens,CD45RA Antigens,CD45RO Antigens,Protein Tyrosine Phosphatase, Receptor Type, C,2H4 Antigens,B220 Antigen,B220 Antigens,CD45 Antigen,CD45R0 Antigens,CD45RB Antigens,CD45RCAntigens,L-CA Antigens,Leukocyte Common Antigen,T200 Antigens,Antigen, B220,Antigen, CD45,Antigen, Leukocyte Common,Antigens, 2H4,Antigens, B220,Antigens, CD45R,Antigens, CD45R0,Antigens, CD45RA,Antigens, CD45RB,Antigens, CD45RO,Antigens, L-CA,Antigens, Leukocyte Common,Antigens, T200,L CA Antigens

Related Publications

R J George, and C W Parker
January 1991, Acta neuropathologica,
R J George, and C W Parker
November 1997, The Biochemical journal,
R J George, and C W Parker
July 1969, Archives of pathology,
R J George, and C W Parker
August 1993, Biochemical and biophysical research communications,
R J George, and C W Parker
May 1992, European journal of immunology,
Copied contents to your clipboard!