Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. 2011

Ericka C Holmstrand, and Susan R Sesack
Department of Neuroscience, University of Pittsburgh, Langley Hall, Room 210, Pittsburgh, PA 15260, USA.

Cholinergic and non-cholinergic neurons in the brainstem pedunculopontine (PPT) and laterodorsal tegmental (LDT) nuclei innervate diverse forebrain structures. The cholinergic neurons within these regions send heavy projections to thalamic nuclei and provide modulatory input as well to midbrain dopamine cells in the ventral tegmental area (VTA). Cholinergic PPT/LDT neurons are known to send collateralized projections to thalamic and non-thalamic targets, and previous studies have shown that many of the afferents to the VTA arise from neurons that also project to midline and intralaminar thalamic nuclei. However, whether cholinergic projections to the VTA and anterior thalamus (AT) are similarly collateralized is unknown. Ultrastructural work from our laboratory has demonstrated that cholinergic axon varicosities in these regions differ both morphologically and with respect to the expression and localization of the high-affinity choline transporter. We therefore hypothesized that the cholinergic innervation to these regions is provided by separate sets of PPT/LDT neurons. Dual retrograde tract-tracing from the AT and VTA indicated that only a small percentage of the total afferent population to either region showed evidence of providing collateralized input to the other target. Cholinergic and non-cholinergic cells displayed a similarly low percentage of collateralization. These results are contrasted to a control case in which retrograde labeling from the midline paratenial thalamic nucleus and the VTA resulted in higher percentages of cholinergic and non-cholinergic dual-tracer labeled cells. Our results indicate that functionally distinct limbic target regions receive primarily segregated signaling from PPT/LDT neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D006652 Histological Techniques Methods of preparing tissue for examination and study of the origin, structure, function, or pathology. Histologic Technic,Histologic Technics,Histologic Technique,Histologic Techniques,Histological Technics,Technic, Histologic,Technics, Histologic,Technique, Histologic,Techniques, Histologic,Histological Technic,Histological Technique,Technic, Histological,Technics, Histological,Technique, Histological,Techniques, Histological
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013681 Tegmentum Mesencephali Portion of midbrain situated under the dorsal TECTUM MESENCEPHALI. The two ventrolateral cylindrical masses or peduncles are large nerve fiber bundles providing a tract of passage between the FOREBRAIN with the HINDBRAIN. Ventral MIDBRAIN also contains three colorful structures: the GRAY MATTER (PERIAQUEDUCTAL GRAY), the black substance (SUBSTANTIA NIGRA), and the RED NUCLEUS. Accessory Oculomotor Nuclei,Annular Nucleus,Darkshevich's Nucleus,Interstitial Nucleus of Cajal,Mesencephalic Tegmentum,Mesencephalic Trigeminal Nucleus,Midbrain Tegmentum,Midbrain Trigeminal Nucleus,Nucleus Annularis,Nucleus Nervi Trochlearis,Nucleus Sagulum,Nucleus Tractus Mesencephalici Nervi Trigemini,Nucleus of Darkschewitsch,Peripeduncular Nucleus,Sagulum Nucleus,Tegmentum of Midbrain,Trochlear Nucleus,Ventral Tegmental Nucleus,Annulari, Nucleus,Annularis, Nucleus,Cajal Interstitial Nucleus,Darkschewitsch Nucleus,Darkshevich Nucleus,Darkshevichs Nucleus,Mesencephali, Tegmentum,Mesencephalic Tegmentums,Mesencephalus, Tegmentum,Midbrain Tegmentums,Nervi Trochleari, Nucleus,Nervi Trochlearis, Nucleus,Nuclei, Accessory Oculomotor,Nucleus Annulari,Nucleus Nervi Trochleari,Nucleus Sagulums,Nucleus, Annular,Nucleus, Darkshevich's,Nucleus, Mesencephalic Trigeminal,Nucleus, Midbrain Trigeminal,Nucleus, Peripeduncular,Nucleus, Sagulum,Nucleus, Trochlear,Nucleus, Ventral Tegmental,Oculomotor Nuclei, Accessory,Sagulum, Nucleus,Sagulums, Nucleus,Tegmental Nucleus, Ventral,Tegmentum Mesencephalus,Tegmentum, Mesencephalic,Tegmentum, Midbrain,Tegmentums, Mesencephalic,Tegmentums, Midbrain,Trigeminal Nucleus, Mesencephalic,Trigeminal Nucleus, Midbrain,Trochleari, Nucleus Nervi,Trochlearis, Nucleus Nervi
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Ericka C Holmstrand, and Susan R Sesack
March 2005, The Journal of comparative neurology,
Ericka C Holmstrand, and Susan R Sesack
January 1999, Neuroscience,
Ericka C Holmstrand, and Susan R Sesack
November 1990, Neuroscience letters,
Ericka C Holmstrand, and Susan R Sesack
September 1996, Mechanisms of ageing and development,
Ericka C Holmstrand, and Susan R Sesack
November 2021, Journal of neuroscience research,
Ericka C Holmstrand, and Susan R Sesack
September 1997, Mechanisms of ageing and development,
Copied contents to your clipboard!