Effects of chronic exposure to ethanol alone and in combination with desipramine on beta-adrenoceptors of rat brain. 1990

J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
Laboratory of Clinical Studies, DICBR, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892.

The effect of chronic ethanol exposure alone or in combination with desipramine on agonist and antagonist binding to beta-adrenoceptors was studied in membrane preparations from rat frontal cortex and hippocampus. Ten day exposure of animals to ethanol vapor (25 mg/l) in inhalation chambers had no effect on binding properties of antagonist iodocyanopindolol (ICYP) in either brain region. However, ethanol in combination with chronic desipramine treatment prevented the reduction of beta-adrenoceptor density in frontal cortex produced by desipramine administration. Similar to its effects on antagonist binding, chronic ethanol exposure did not change the agonist isoproterenol binding characteristics measured in membranes from either rat frontal cortex or hippocampus. However, the combination of ethanol plus desipramine reduced the dissociation constant of the low affinity state of the receptor (KL) in frontal cortex from 23.1 +/- 3.7 microM in controls to 11.2 +/- 1.7 microM. Moreover, ethanol plus desipramine produced a greater decrease in the percentage of cortical receptors in the high affinity state for agonist (%RH) than did desipramine alone. This suggests that ethanol enhances desipramine-induced desensitization of beta-adrenoceptors in frontal cortex in spite of the prevention of reduction in density of the receptors. In hippocampal membranes, ethanol together with desipramine prevented desipramine-induced changes in agonist binding characteristics, i.e. the decrease in KH (dissociation constant from high affinity state of the receptor) and the consequent enhancement in KL/KH ratio. Thus, chronic exposure to relatively low concentrations of ethanol partially prevents effects of desipramine on beta-adrenoceptors.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
June 1994, Journal of neurochemistry,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
August 2013, Proceedings of the National Academy of Sciences of the United States of America,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
December 1984, Neuropharmacology,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
January 1983, Acta psychiatrica Scandinavica. Supplementum,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
February 1991, European journal of pharmacology,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
January 1989, Alcohol (Fayetteville, N.Y.),
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
June 1986, Biochemical pharmacology,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
January 1988, Neurochemistry international,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
February 1980, European journal of pharmacology,
J Turkka, and G Gurguis, and J Karanian, and W Z Potter, and M Linnoila
September 1993, Journal of the American Academy of Child and Adolescent Psychiatry,
Copied contents to your clipboard!