Actions of pinacidil on membrane currents in canine ventricular myocytes and their modulation by intracellular ATP and cAMP. 1990

G N Tseng, and B F Hoffman
Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

We studied the effects of pinacidil (3-50 microM) on the membrane currents of canine ventricular myocytes, using the whole-cell variant of the patch-clamp technique, and the modulation of these effects by intracellular environment, using the pipette perfusion technique. The following observations were obtained: (1) pinacidil induced a dose-dependent outward shift in current at voltages positive to -70 mV; (2) the pinacidil-induced current was largely time-independent at voltages positive to -50 mV and displayed an increase in current fluctuations at more positive voltages, resembling the kinetic properties of current through the ATP-regulated K+ channels; (3) elevating the extracellular potassium concentration [( K+]o) caused a positive shift in the voltage where the pinacidil-induced current crossed the voltage axis and increased the slope conductance of this current; (4) the pinacidil-induced current was reduced by Ba2+ (0.5-1.5 mM) and abolished by intracellular Cs+ (125 mM); (5) glibenclamide reversibly reduced or abolished the pinacidil-induced current; (6) the action of pinacidil was decreased by elevating [ATP] in the pipette solution (from 1 to 10 mM); (7) the action of pinacidil was augmented by adding isoproterenol (1 microM) to the superfusate or adding cAMP (0.1 mM) to the pipette solution; (8) elevating temperature augmented, and accelerated the onset of pinacidil's action; (9) pinacidil reversibly decreased the Ca2(+)-independent transient outward current (Ito1) but augmented the Ca2(+)-dependent transient outward current (Ito2). Based on these observations, we reached the following conclusions: (1) the main effect of pinacidil is to increase an outward current through the ATP-regulated K+ channels; (2) pinacidil's action is modulated by an enzymatic reaction.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator

Related Publications

G N Tseng, and B F Hoffman
October 2009, Acta pharmacologica Sinica,
G N Tseng, and B F Hoffman
February 2007, Archives of biochemistry and biophysics,
G N Tseng, and B F Hoffman
June 1993, The American journal of physiology,
G N Tseng, and B F Hoffman
January 1988, Ion channels,
G N Tseng, and B F Hoffman
February 1996, The American journal of physiology,
G N Tseng, and B F Hoffman
November 2006, British journal of pharmacology,
Copied contents to your clipboard!