Preemptive regulation of intracellular pH in hippocampal neurons by a dual mechanism of depolarization-induced alkalinization. 2011

Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
Department of Neurosurgery and Physiology, New York University Langone Medical Center, New York, New York 10016, USA.

Numerous studies have documented the mechanisms that regulate intracellular pH (pH(i)) in hippocampal neurons in response to an acid load. Here, we studied the response of pH(i) to depolarization in cultured hippocampal neurons. Elevation of external K+ (6-30 mm) elicited an acid transient followed by a large net alkaline shift. Similar responses were observed in acutely dissociated hippocampal neurons. In Ca2+ -free media, the acid response was curtailed and the alkaline shift enhanced. DIDS blocked the alkaline response and revealed a prolonged underlying acidification that was highly dependent on Ca2+ entry. Similar alkaline responses could be elicited by AMPA, indicating that this rise in pH(i) was a depolarization-induced alkalinization (DIA). The DIA was found to consist of Cl- -dependent and Cl- -independent components, each accounting for approximately one-half of the peak amplitude. The Cl- -independent component was postulated to arise from operation of the electrogenic Na+ -HCO3- cotransporter NBCe1. Quantitative PCR and single-cell multiplex reverse transcription-PCR demonstrated message for NBCe1 in our hippocampal neurons. In neurons cultured from Slc4a4 knock-out (KO) mice, the DIA was reduced by approximately one-half compared with wild type, suggesting that NBCe1 was responsible for the Cl- -independent DIA. In Slc4a4 KO neurons, the remaining DIA was virtually abolished in Cl- -free media. These data demonstrate that DIA of hippocampal neurons occurs via NBCe1, and a parallel DIDS-sensitive, Cl- -dependent mechanism. Our results indicate that, by activating net acid extrusion in response to depolarization, hippocampal neurons can preempt a large, prolonged, Ca2+ -dependent acidosis.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
December 1994, Journal of neurophysiology,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
July 1985, The Journal of physiology,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
October 1994, Neuroscience,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
February 1991, The Journal of biological chemistry,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
August 1993, Hepatology (Baltimore, Md.),
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
January 1998, Life sciences,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
September 2004, Neurochemical research,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
January 2014, Frontiers in physiology,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
January 1998, Brain research,
Nataliya Svichar, and Susana Esquenazi, and Huei-Ying Chen, and Mitchell Chesler
January 1985, Brain research,
Copied contents to your clipboard!