Insertion mutagenesis of the gene encoding the ferrichrome-iron receptor of Escherichia coli K-12. 1990

G Carmel, and D Hellstern, and D Henning, and J W Coulton
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.

The ferrichrome-iron receptor of Escherichia coli K-12 encoded by the fhuA gene is a multifunctional outer membrane receptor with an Mr of 78,000. It is required for the binding and uptake of ferrichrome and is the receptor for bacteriophages T5, T1, phi 80, and UC-1 as well as for colicin M. The fhuA gene was cloned into pBR322, and the recombinant plasmid pGC01 was mutagenized by the insertion of 6-base-pair TAB (two amino acid Barany) linkers into CfoI and HpaII restriction sites distributed throughout the coding region. A library of 18 TAB linker insertions in fhuA was generated; 8 of the mutations were at CfoI sites and 10 were at HpaII sites. All mutations inserted a hexamer that encoded a unique SacI site. A large deletion in fhuA was also isolated by TAB linker mutagenesis. Except for the deletion mutant, all of the linker insertion mutant FhuA proteins were found in the outer membrane in amounts similar to those found in the wild type. Five of the linker insertion mutants were susceptible to cleavage by endogenous proteolytic activity: a second FhuA-related band that migrated at approximately 72 kilodaltons could be detected on Coomassie blue-stained gels and on Western blots (immunoblots) by using a carboxy terminus-specific anti-peptide antibody. Receptor functions were measured with the mutated genes present in a single copy on the chromosome. Some of the receptors conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating as that of wild-type FhuA; killing by colicin M was also unaffected. Several mutants were altered in their sensitivities to the lethal agents. TAB linker insertions after amino acids 69 and 128 abolished all receptor functions. Phage T5 id not bind to these mutant FhuA proteins in detergent extracts. The deletion mutant was also defective in all FhuA functions. Sensitivity to the lethal agents of cellsl that expressed mutant FhuAs with insertions after amino acids 59 and 135 was reduced by several orders of magnitude. Insertion at other selected sites decreased some or all receptor functions only slightly. An insertion after amino acid 321 selectively eliminated ferrichrome growth promotion. Finally, a strain carrying a mutant fhuA gene on the chromosome in which the linker insertion occurred after amino acid 82 showed a tonB phenotype. These subtle perturbations that were introduced into the FhuA protein resulted in changes in its stability and in the binding and uptake of its cognate ligands.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

G Carmel, and D Hellstern, and D Henning, and J W Coulton
December 1983, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
July 1994, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
July 1982, Biochimica et biophysica acta,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
November 1996, Molecular microbiology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
January 1986, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
August 1987, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
August 1984, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
January 1983, Molecular & general genetics : MGG,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
September 1990, Journal of bacteriology,
G Carmel, and D Hellstern, and D Henning, and J W Coulton
January 1981, Molecular & general genetics : MGG,
Copied contents to your clipboard!