Endogenously labeled low density lipoprotein triglyceride and apoprotein B kinetics. 1978

C Malmendier, and M Berman

The kinetics of endogenously labeled low density lipoprotein (LDL) triglycerides (TG) and apoprotein B (apoB) have been studied in four normal and in four hyperlipemic subjects using double tracers. Analysis of the data suggests that most LDL triglycerides turn over about 10 times faster than apoB (0.003/min vs. 0.0003/min) and that about 10% of the LDL particles contain most of the TG found with LDL. It is not possible to determine from the analysis whether each new LDL particle arrives with the excess TG or whether only a subpopulation of particles contains most of the TG. The kinetic analysis further suggests that triglyceride-rich LDL particles do not exchange with an extraplasma compartment as most LDL particles do, and thus, they behave more like very low density lipoprotein particles. A compartmental model accounting for both the LDL-TG and LDL-apoB kinetics is proposed.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001053 Apolipoproteins Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES. Apolipoprotein
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3

Related Publications

C Malmendier, and M Berman
February 1984, The American journal of physiology,
C Malmendier, and M Berman
November 1980, The American journal of physiology,
C Malmendier, and M Berman
March 1978, The Journal of clinical investigation,
C Malmendier, and M Berman
November 1986, Metabolism: clinical and experimental,
C Malmendier, and M Berman
May 1984, The Journal of biological chemistry,
Copied contents to your clipboard!