The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. 1990

J H Weiss, and D M Hartley, and J Koh, and D W Choi
Department of Neurology and Neurological Sciences, Stanford University Medical School, CA 94305.

High concentrations of potent N-methyl-D-aspartate (NMDA) agonists can trigger degeneration of cultured mouse cortical neurons after an exposure of only a few minutes; in contrast, selective non-NMDA agonists or low levels of NMDA agonists require exposures of several hours to induce comparable damage. The dihydropyridine calcium channel antagonist nifedipine was used to test whether this slow neurotoxicity is mediated by a calcium influx through voltage-gated channels. Nifedipine had little effect on the widespread neuronal degeneration induced by brief exposure to high concentrations of NMDA but substantially attenuated the neurotoxicity produced by 24-hour exposure to submaximal concentrations of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or quinolinate. Calcium ion influx through dihydropyridine-sensitive, voltage-dependent calcium channels may be an important step in the neuronal injury induced by the prolonged activation of NMDA or non-NMDA glutamate receptors.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011805 Quinolinic Acids Dicarboxylic acids with a PYRIDINE backbone. Quinolinic Acids are downstream products of the KYNURENINE pathway which metabolize amino acid TRYPTOPHAN. Acids, Quinolinic
D004336 Drug Antagonism Phenomena and pharmaceutics of compounds that inhibit the function of agonists (DRUG AGONISM) and inverse agonists (DRUG INVERSE AGONISM) for a specific receptor. On their own, antagonists produce no effect by themselves to a receptor, and are said to have neither intrinsic activity nor efficacy. Antagonism, Drug,Antagonisms, Drug,Drug Antagonisms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

J H Weiss, and D M Hartley, and J Koh, and D W Choi
January 2002, Advances in experimental medicine and biology,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
July 1985, Sheng li ke xue jin zhan [Progress in physiology],
J H Weiss, and D M Hartley, and J Koh, and D W Choi
January 1986, General pharmacology,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
January 1994, Neurotoxicology,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
October 1985, The American journal of medicine,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
May 1992, Annals of the New York Academy of Sciences,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
July 1991, British journal of pharmacology,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
January 1993, NIDA research monograph,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
September 1990, Trends in pharmacological sciences,
J H Weiss, and D M Hartley, and J Koh, and D W Choi
January 1982, Neuropharmacology,
Copied contents to your clipboard!