Interaction between alpha adrenergic and serotonergic activation of canine saphenous veins. 1978

F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte

Serotonin and norepinephrine produced concentration-dependent contractions of helical strips of canine saphenous veins. The contractile responses to both agonists were inhibited by the alpha adrenergic receptor blocking agent phentolamine. Tolazoline inhibited the contractile responses of canine saphenous veins to norepinephrine but augmented those to serotonin. Blockade of adrenergic neuronal reuptake with cocaine enhanced the sensitivity of the canine saphenous vein to serotonin, but did not suppress the inhibition by phentolamine of the contractile responses to this indolealkylamine. Serotonin-mediated venoconstriction was not secondary to release of norepinephrine since it was not accompanied by an increased release of [7-3H]-norepinephrine. These findings suggest that serotonin does not contract canine saphenous veins by stimulation of typical serotonergic receptors. The binding sites for serotonin and norepinephrine in cutaneous venous smooth muscle may share part of a common receptor complex, which triggers the contractile process. Alternatively, serotonin and norepinephrine may act at two different receptors to elicit contraction of canine saphenous veins.

UI MeSH Term Description Entries
D008784 Methysergide An ergot derivative that is a congener of LYSERGIC ACID DIETHYLAMIDE. It antagonizes the effects of serotonin in blood vessels and gastrointestinal smooth muscle, but has few of the properties of other ergot alkaloids. Methysergide is used prophylactically in migraine and other vascular headaches and to antagonize serotonin in the carcinoid syndrome. Dimethylergometrin,Methylmethylergonovine,Deseril,Desril,Désernil-Sandoz,Methysergide Dimaleate,Methysergide Maleate,Sansert,UML-491,Dimaleate, Methysergide,Désernil Sandoz,Maleate, Methysergide,UML 491,UML491
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
January 1987, General pharmacology,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
September 1992, General pharmacology,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
February 1987, The Journal of pharmacology and experimental therapeutics,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
February 1984, The Journal of physiology,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
July 1986, The Journal of pharmacology and experimental therapeutics,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
September 1985, The Journal of pharmacology and experimental therapeutics,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
June 1989, Circulation,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
June 1983, Archives internationales de pharmacodynamie et de therapie,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
March 1986, The Journal of physiology,
F A Curro, and S Greenberg, and T J Verbeuren, and P M Vanhoutte
July 1978, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!