Facilitation of synaptic transmission by general anaesthetics. 1978

M E Morris

1. The actions of five structurally different intravenous and inhalation anaesthetics (alphaxalone/alphadolone, halothane, ketamine, methohexitone, and pentobarbitone) have been studied on synaptic transmission through the cuneate nucleus of the dorsal column-lemniscal afferent pathway in the decerebrate cat. 2. Synaptic input and output were estimated from antidromic and orthodromic potentials, which were evoked by either afferent volleys from the periphery or micro-electrode excitation of the presynaptic fibre terminals in the cuneate and recorded at forelimb nerves and the medial lemniscus. 3. Each of the anaesthetic agents potentiated the efficiency of synaptic transmission, as shown by the elevation of input-output curves constructed from the integrals of the potentials evoked by varying intensities of either peripheral or cuneate stimulation. 4. The excitability of the afferent terminals, as measured at the peripheral nerves by the antidromic responses to micro-electrode stimulation, was depressed by the anaesthetics. Post-synaptic excitability, which was assessed from the direct lemniscal response to intra-nuclear stimulation, did not appear to change. 5. Hypotensive states (mean arterial levels less than 60 torr) produced depolarization of presynaptic terminals and depression of synaptic efficiency and transmission; these changes opposed the primary effects of the general anaesthetics. 6. It is concluded that anaesthetics do not depress activity at all synapses of the central nervous system. Their facilitatory action on cuneate transmission is attributed to an enhanced release of excitatory transmitter; the underlying mechanism may be hyperpolarization of the primary afferent terminals, secondary to an increase in K+ conductance.

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008723 Methohexital An intravenous anesthetic with a short duration of action that may be used for induction of anesthesia. Methohexitone,Brevimytal Natrium,Brevital,Brietal,Brietal-Sodium,Methohexital Sodium,Methohexital, Monosodium Salt,Brietal Sodium,Monosodium Salt Methohexital,Natrium, Brevimytal,Sodium, Methohexital
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000530 Alfaxalone Alfadolone Mixture A 3:1 mixture of alfaxalone with alfadolone acetate that previously had been used as a general anesthetic. It is no longer actively marketed. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1445) Alfatesine,Alfathesin,Alphadione,Alphathesin,Althesin,CT-1341,Glaxovet,Saffan,Alfadolone Mixture, Alfaxalone,CT 1341,CT1341

Related Publications

M E Morris
March 1983, British journal of anaesthesia,
M E Morris
July 1972, Neuropharmacology,
M E Morris
January 1975, Proceedings of the Western Pharmacology Society,
M E Morris
January 1978, General pharmacology,
M E Morris
January 1977, Ciba Foundation symposium,
M E Morris
November 1992, General pharmacology,
M E Morris
March 1983, British journal of anaesthesia,
M E Morris
March 1998, Pharmacology & therapeutics,
Copied contents to your clipboard!