Antigen receptor rearrangement and expression in acute leukemias. 1990

M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
Dept. of Internal Medicine Innestadt, University, Munich, FRG.

Twenty-two leukemias, 11 of which were undifferentiated with respect to surface antigen markers, were investigated for their antigen receptor gene rearrangement, transcription products of these antigen receptor genes, and surface antigen pattern of the cells. Among the three less-differentiated groups rearrangement was observed in 2/10 cases for the TCR beta-chain and in 4/11 cases for the heavy-chain gene. TCR beta-mRNA, however, was expressed in seven out of eight cases and the mu heavy-chain mRNA in eight out of ten cases investigated. Also mRNA of TCR alpha, the rearrangement of which could not be detected with our probes, was expressed as frequently as TCR beta. Although rearrangement of the appropriate gene was found regularly in the more mature leukemias, transcription of these genes was lower or even lacking. These findings indicate that expression of antigen receptor mRNA in undifferentiated leukemias can be activated by events other than maturational rearrangement.

UI MeSH Term Description Entries
D007148 Immunoglobulin mu-Chains The class of heavy chains found in IMMUNOGLOBULIN M. They have a molecular weight of approximately 72 kDa and they contain about 57 amino acid residues arranged in five domains and have more oligosaccharide branches and a higher carbohydrate content than the heavy chains of IMMUNOGLOBULIN G. Ig mu Chains,Immunoglobulins, mu-Chain,Immunoglobulin mu-Chain,mu Immunoglobulin Heavy Chain,mu Immunoglobulin Heavy Chains,mu-Chain Immunoglobulins,Chains, Ig mu,Immunoglobulin mu Chain,Immunoglobulin mu Chains,Immunoglobulins, mu Chain,mu Chain Immunoglobulins,mu Chains, Ig,mu-Chain, Immunoglobulin,mu-Chains, Immunoglobulin
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers

Related Publications

M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
July 1989, Blood,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
June 1993, Chinese medical journal,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
January 1999, Current topics in microbiology and immunology,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
July 2002, Leukemia,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
February 1983, The Journal of clinical investigation,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
December 1987, The Japanese journal of experimental medicine,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
April 1998, Current opinion in immunology,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
August 2023, Pediatric blood & cancer,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
January 1990, Leukemia research,
M Volkmann, and P Mar, and K Pachmann, and E Thiel, and B Emmerich
January 1990, Leukemia research,
Copied contents to your clipboard!