Outer membrane and porin characteristics of Serratia marcescens grown in vitro and in rat intraperitoneal diffusion chambers. 1990

F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285.

The composition and antibiotic permeability barrier of the outer membrane of Serratia marcescens were assessed in cells grown in vivo and in vitro. Intraperitoneal diffusion chambers implanted in rats were used for the in vivo cultivation of bacteria. Outer membranes isolated from log-phase bacterial cells recovered from these chambers were compared with membranes isolated from cells grown in vitro. Analysis revealed that the suspected 41-kilodalton porin and the OmpA protein were recovered on sodium dodecyl sulfate-polyacrylamide gels in equal quantities. Several high-molecular-weight proteins, thought to be iron starvation induced, appeared in the diffusion chamber-grown cells. The outer membrane permeability barriers to cephaloridine were similar in in vivo- and in vitro-grown cells based on permeability coefficient calculations. The permeability coefficient of cephaloridine in S. marcescens cells (30.3 x 10(-5) to 38.9 x 10(-5) cm s-1) was greater than that obtained for an Escherichia coli strain expressing only porin OmpC but smaller than those obtained for the E. coli wild type and a strain expressing only porin OmpF. Functional characterization of the suspected porin was performed by using the planar lipid bilayer technology. The sodium dodecyl sulfate-0.4 M NaCl-soluble porin from both in vitro- and in vivo-grown cells showed an average single-channel conductance in 1 M KCl of 1.6. A partial amino acid sequence (19 residues) was obtained for the S. marcescens porin. The sequence showed a very high homology to the E. coli OmpC porin. These data identified the S. marcescens outer membrane 41-kilodalton protein as a porin by both functional and amino acid analyses. Also, the methodology used allowed for efficient growth and recovery of diffusion chamber-grown bacterial cells and permitted identification of specific in vivo-induced changes in bacterial cell membrane composition.

UI MeSH Term Description Entries
D007769 Lactams Cyclic AMIDES formed from aminocarboxylic acids by the elimination of water. Lactims are the enol forms of lactams. Lactam,Lactim,Lactims
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial

Related Publications

F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
January 1993, Canadian journal of microbiology,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
April 1993, Canadian journal of microbiology,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
December 1994, Journal of chemotherapy (Florence, Italy),
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
December 1979, Journal of bacteriology,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
April 1968, The Journal of infectious diseases,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
January 1994, Microbiology and immunology,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
January 1966, Acta pathologica et microbiologica Scandinavica,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
October 1993, Analytical biochemistry,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
May 2004, Biophysical chemistry,
F Malouin, and G D Campbell, and M Halpenny, and G W Becker, and T R Parr
September 1997, Microbiologia (Madrid, Spain),
Copied contents to your clipboard!