Nucleotide sequence relationships between the genomes of an endogenous and an exogenous avian tumor virus. 1978

J M Coffin, and M Champion, and F Chabot

We have used mapping of large T1 oligonucleotides to examine the genome of Rous-associated virus-O (RAV-O), an endogenous virus of chickens, and to compare it with that of Prague strain Rous sarcoma virus, subgroup B, (Pr-RSV-B), an exogenous sarcoma virus. To extend the sensitivity of such comparisons, we have developed a system of nucleic acid hybridization and hybridization-competition combined with fingerprinting. This method allows us to estimate the relative degree of relatedness of various portions of the viral genomes. From the results of this study, we have concluded that the genomes of Pr-RSV-B and RAV-O are related in the following way. The 5'-terminal half of the genomes (corresponding to the gag and pol regions) is virtually identical, with only scattered single nucleotide differences. This region is followed by a region comprising 25 to 30% of the genome (the env region) which contains substantial nucleotide sequence differences, most or all of which are due to single base changes. The env-coding region can be further subdivided into three regions: a more variable region probably containing sequences coding for subgroup specificity, flanked by relatively common sequences on each side. To the 3' side of the env region, the RAV-O genome contains a very short sequence not found in Pr-RSV-B, whereas the Pr-RSV-B genome contains a much longer unrelated sequence. The central portion of this sequence comprises the src gene as defined by transformation-defective mutants. Particularly striking is the absence, in the RAV-O genome, of any nucleotide sequence related to the "c region" found very near the 3' end of all exogenous tumor viruses. Both the Pr-RSV-B and RAV-O genomes contain the identical terminally redundant sequence of 21 nucleotides near each end of the genome.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001354 Avian Leukosis Virus The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl. Leukosis Virus, Avian,Lymphomatosis Virus, Avian,Rous-Associated Virus,Avian Leukosis Viruses,Avian Lymphomatosis Virus,Avian Lymphomatosis Viruses,Leukosis Viruses, Avian,Lymphomatosis Viruses, Avian,Rous Associated Virus,Virus, Avian Leukosis,Virus, Avian Lymphomatosis,Virus, Rous-Associated,Viruses, Avian Leukosis,Viruses, Avian Lymphomatosis
D001358 Avian Sarcoma Viruses Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS. Avian Sarcoma Virus B77,Chicken Sarcoma Virus B77,Chicken Tumor 1 Virus,Fujinami sarcoma virus,Sarcoma Viruses, Avian,Avian Sarcoma Virus,Fujinami sarcoma viruses,Sarcoma Virus, Avian,Virus, Avian Sarcoma,Viruses, Avian Sarcoma,sarcoma virus, Fujinami,virus, Fujinami sarcoma,viruses, Fujinami sarcoma
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

J M Coffin, and M Champion, and F Chabot
April 1983, Virology,
J M Coffin, and M Champion, and F Chabot
September 1974, Proceedings of the National Academy of Sciences of the United States of America,
J M Coffin, and M Champion, and F Chabot
July 1976, Proceedings of the National Academy of Sciences of the United States of America,
J M Coffin, and M Champion, and F Chabot
March 1968, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J M Coffin, and M Champion, and F Chabot
February 1993, Immunological reviews,
Copied contents to your clipboard!