Trans-gamma-hydroxycrotonic acid binding sites in brain: evidence for a subpopulation of gamma-hydroxybutyrate sites. 1990

V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
Centre de Neurochimie du CNRS, Strasbourg, France.

Trans-gamma-hydroxycrotonate (THCA), a compound naturally present in rat brain, possesses high-affinity binding sites with a heterogeneous distribution which are superimposable with those for gamma-hydroxybutyrate (GHB). Binding studies of THCA on rat brain membranes revealed two binding components, one of high affinity (Kd1, 7 nM, Bmax1 42 fmol/mg protein) and the other of low affinity (Kd2, 2 microM, Bmax2 13 pmol/mg protein). Displacement curves of [3H]THCA by THCA and GHB or of [3H]GHB by THCA are in favour of the existence of a specific high affinity site for THCA. Quantitative autoradiography with image analysis of [3H]THCA binding in rat brain slices indicated that [3H]THCA high affinity binding was displaced at a lower potency by GHB. THCA showed also some selectivity in displacing [3H]GHB from its high affinity binding site (Kd = 95 nM). This mutual overlap favours a subpopulation of GHB receptors, which have THCA as a natural ligand, showing partial agonistic properties compared to GHB. The functional significance of this result remains unknown.

UI MeSH Term Description Entries
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012978 Sodium Oxybate The sodium salt of 4-hydroxybutyric acid. It is used for both induction and maintenance of ANESTHESIA. 4-Hydroxybutyrate Sodium,Oxybate Sodium,Sodium Oxybutyrate,Sodium gamma-Hydroxybutyrate,gamma-Hydroxybutyrate,Somsanit,Xyrem,4 Hydroxybutyrate Sodium,Oxybate, Sodium,Oxybutyrate, Sodium,Sodium gamma Hydroxybutyrate,gamma Hydroxybutyrate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator

Related Publications

V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
July 1985, Biochemical pharmacology,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
March 1982, Life sciences,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
July 1995, Human reproduction (Oxford, England),
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
March 1981, Molecular pharmacology,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
October 1987, Neuropharmacology,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
January 1983, Biochemical and biophysical research communications,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
November 2003, The European journal of neuroscience,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
March 2002, Journal of neurochemistry,
V Hechler, and M Schmitt, and J J Bourguignon, and M Maitre
March 1990, Molecular and cellular biochemistry,
Copied contents to your clipboard!