Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals. 1990

M Kaneko, and P K Singal, and N S Dhalla
Division of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada.

Effects of oxygen free radicals on Ca2+/Mg2+ ATPase and ATP-independent Ca2(+)-binding activities were examined in rat heart sarcolemma. Membranes were incubated with different oxygen radical generating media such as xanthine + xanthine oxidase, hydrogen peroxide, and hydrogen peroxide + Fe2+. In the presence of xanthine + xanthine oxidase, Ca2+ ATPase activity was stimulated and this effect was prevented by the addition of superoxide dismutase. Hydrogen peroxide also showed a significant increase in Ca2(+)-ATPase activity in a dose-dependent manner and this effect was blocked by catalase. On the other hand, a combination of hydrogen peroxide + Fe2+ decreased Ca2(+)-ATPase activity; this depression was prevented by the addition of D-mannitol. The observed change in Ca2(+)-ATPase activity due to oxygen free radicals was associated with changes in Vmax, whereas Ka remained unaffected. Both xanthine + xanthine oxidase and hydrogen peroxide increased whereas, hydrogen peroxide + Fe2+ inhibited the ATP-independent Ca2(+)-binding activities. It is suggested that oxygen free radicals may influence Ca2+ movements in the cell by altering the Ca2+/Mg2+ ATPase and Ca2(+)-binding activities of the membrane and these effects may be oxygen-radical species specific.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006878 Hydroxides Inorganic compounds that contain the OH- group.

Related Publications

M Kaneko, and P K Singal, and N S Dhalla
September 1991, Japanese circulation journal,
M Kaneko, and P K Singal, and N S Dhalla
February 1989, The American journal of physiology,
M Kaneko, and P K Singal, and N S Dhalla
September 1989, The American journal of physiology,
M Kaneko, and P K Singal, and N S Dhalla
May 1991, Biochimica et biophysica acta,
M Kaneko, and P K Singal, and N S Dhalla
January 1985, The Canadian journal of cardiology,
M Kaneko, and P K Singal, and N S Dhalla
January 1991, Bratislavske lekarske listy,
M Kaneko, and P K Singal, and N S Dhalla
January 1992, Japanese circulation journal,
M Kaneko, and P K Singal, and N S Dhalla
May 1979, Canadian journal of physiology and pharmacology,
M Kaneko, and P K Singal, and N S Dhalla
January 1988, Molecular and cellular biochemistry,
M Kaneko, and P K Singal, and N S Dhalla
January 1985, The Canadian journal of cardiology,
Copied contents to your clipboard!