Conformation-activity relationships of cyclic dermorphin analogues. 1990

B C Wilkes, and P W Schiller
Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Quebec, Canada.

A theoretical conformational analysis (molecular mechanics study) of nine cyclic tetrapeptides, structurally related to the highly mu-receptor-selective dermorphin analogue H-Tyr-D-Orn-Phe-Asp-NH2, was performed. These compounds display considerable diversity in their mu-receptor affinity and selectivity. A systematic search and subsequent energy minimization in absence of the exocyclic Tyr1 residue and Phe3 side chain revealed the constrained nature of the 11-13-membered ring structures contained in these analogues. No more than four low-energy conformers (within 2 kcal/mol of the lowest energy conformation) were found in each case. After attachment of the Tyr1 moiety and Phe3 side chain to the "bare" low-energy ring structures, a systematic search and energy minimization of these exocyclic moieties resulted in a limited number of low-energy conformational families for all compounds. Five analogues with high mu-receptor affinity--H-Tyr-D-Orn-Phe-Asp-NH2, H-Tyr-D-Orn-Phe-D-Asp-NH2, H-Tyr-D-Asp-Phe-Orn-NH2, H-Tyr-D-Asp-Phe-A2bu-NH2 (A2 bu: alpha, gamma-diaminobutyric acid) and H-Tyr-D-Cys-Phe-Cys-NH2--all showed a tilted stacking interaction between the Tyr1 and Phe3 aromatic rings in the lowest or second lowest energy conformation found. The same kind of stacking was not possible in low-energy conformers of the four analogues with poor affinity for the mu-receptor [H-Tyr-L-Orn-Phe-Asp-NH2, H-Tyr-D-Orn-D-Phe-Asp-NH2, H-Tyr-D-Orn-Phe(NMe)-Asp-NH2 [Phe(NMe): N alpha-methylphenylalanine], and H-Tyr-D-Orn-Phg-Asp-NH2 (Phg: phenylglycine)].(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors
D018847 Opioid Peptides The endogenous peptides with opiate-like activity. The three major classes currently recognized are the ENKEPHALINS, the DYNORPHINS, and the ENDORPHINS. Each of these families derives from different precursors, proenkephalin, prodynorphin, and PRO-OPIOMELANOCORTIN, respectively. There are also at least three classes of OPIOID RECEPTORS, but the peptide families do not map to the receptors in a simple way. Opiates, Endogenous,Endogenous Opiates,Opiate Peptides,Opioid Peptide,Peptide, Opioid,Peptides, Opiate,Peptides, Opioid

Related Publications

B C Wilkes, and P W Schiller
January 1985, Peptides,
B C Wilkes, and P W Schiller
August 2007, Journal of peptide science : an official publication of the European Peptide Society,
B C Wilkes, and P W Schiller
June 2005, Journal of peptide science : an official publication of the European Peptide Society,
B C Wilkes, and P W Schiller
May 2013, European journal of medicinal chemistry,
B C Wilkes, and P W Schiller
January 1991, Peptides,
B C Wilkes, and P W Schiller
August 1983, Die Pharmazie,
B C Wilkes, and P W Schiller
January 1986, British journal of pharmacology,
Copied contents to your clipboard!