Inhibition of elevated arginine vasopressin secretion in response to osmotic stimulation and acute haemorrhage by U-62066E, a kappa-opioid receptor agonist. 1990

K Yamada, and M Nakano, and S Yoshida
Second Department of Internal Medicine, School of Medicine, Chiba University, Japan.

1. The effect of kappa (kappa) opioid receptor activation on the increase in arginine vasopressin (AVP) secretion evoked by two acute and quite different stimuli (i.e., haemorrhage and osmotic stimulus due to hypertonic saline infusion) were evaluated in conscious Long-Evans rats, by use of U-62066E, a highly selective kappa-opioid receptor agonist, and MR2266, an opioid receptor antagonist with some selectivity for kappa-receptors. 2. An acute haemorrhage, which reduced the mean blood pressure by approximately 50%, resulted in a large increase in the plasma AVP (pAVP) levels of control rats. However, the administration of U-62066E (0.2 mg kg-1 or 2.0 mg kg-1) reduced the increase due to haemorrhage in a dose-dependent manner. In contrast, concomitant administration of 2.0 mg kg-1 of MR2266 with U-62066E significantly attenuated the inhibition of pAVP levels produced by U-62066E 2.0 mg kg-1. 3. Hypertonic saline infusion (5% hypertonic saline solution at a rate of 0.24 ml kg-1 min-1 for 10 min) caused the elevation of plasma osmolality (pOsm) from 294.0 +/- 1.6 mosmol kg-1 to 304.4 +/- 1.9 mosmol kg-1, simultaneously resulting in a significant increase in pAVP levels from 2.34 +/- 0.28 pg ml-1 to 4.54 +/- 0.51 pg ml-1. However, the administration of U-62066E (0.05 mg kg-1 or 0.2 mg kg-1) reduced the osmotically induced increase in pAVP in a dose-dependent manner although pOsm showed the same degree of increase as in controls. In contrast, concomitant administration of 0.2mgkg-1 of MR2266 with U-62066E significantly attenuated the inhibition of pAVP levels produced by U-62066E 0.2mgkg- , whereas pOsm showed the same degree of increase as in controls. No significant changes in the mean blood pressure of the respective groups were observed during this experiment. 4. It is suggested that the Kappa-Opioid receptor activation reduces the increase in AVP secretion evoked by these two different stimuli and that the inhibitory involvement occurs in the neural lobe in the process of AVP secretion.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006470 Hemorrhage Bleeding or escape of blood from a vessel. Bleeding,Hemorrhages
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic

Related Publications

K Yamada, and M Nakano, and S Yoshida
November 1991, British journal of clinical pharmacology,
K Yamada, and M Nakano, and S Yoshida
March 1997, British journal of pharmacology,
K Yamada, and M Nakano, and S Yoshida
January 1994, European journal of clinical pharmacology,
K Yamada, and M Nakano, and S Yoshida
September 2000, British journal of clinical pharmacology,
K Yamada, and M Nakano, and S Yoshida
May 1997, Endocrinology,
K Yamada, and M Nakano, and S Yoshida
January 1989, European journal of pharmacology,
K Yamada, and M Nakano, and S Yoshida
July 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
Copied contents to your clipboard!