Activin-A modulates growth hormone secretion from cultures of rat anterior pituitary cells. 1990

L M Bilezikjian, and A Z Corrigan, and W Vale
Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, California 92037.

Activins, initially identified as FSH-releasing proteins, have now been shown to exert effects on other cell types of the anterior pituitary, including the somatotrophs. In the present study the inhibitory action of activin-A (beta A beta A) on GH secretion was characterized using primary cultures of rat anterior pituitary cells. Activin-A suppressed basal GH secretion for up to 72 h (the longest time tested). Immediately after the treatment period with activin-A, when the cells were thoroughly washed and further incubated with or without rat GH-releasing factor (rGRF), basal and stimulated GH secretion were partially inhibited as well. In parallel, activin-A pretreatment diminished rGRF-stimulated cAMP accumulation. The effects of activin-A were time- and concentration-dependent, with half-maximal inhibition occurring in the range of 20-30 pM activin-A. A minimum pretreatment time of 3 h was required for maximal effect, and when rGRF and activin-A were added simultaneously, no inhibition was evident. Secretory responses of activin-A-pretreated cells to rGRF were influenced by glucocorticoids. When cells were cultured in the presence of the synthetic glucocorticoid dexamethasone, pretreatment (72 h) with activin-A attenuated rGRF-stimulated GH secretion only during short (1-h), but not longer (3-h), exposure periods to the neuropeptide. In the absence of dexamethasone, rGRF-stimulated GH secretion was inhibited at all incubation times tested (up to 3 h). A 3-h exposure to the protein factor did not alter total (cellular plus secreted) immunoreactive GH levels, suggesting that the inhibition of secretion with the shorter treatment was not secondary to attenuated GH biosynthesis. However, longer (72-h) treatment with activin-A decreased total GH levels, indicating lower GH biosynthetic rates, as previously shown. Somatostatin is recognized as the primary negative modulator of GH secretion. Activin-A and SRIF inhibited GH secretion additively, suggesting distinct mechanisms of action for each. GH secretion in response to other secretagogues, such as 12-O-tetradecanoyl-phorbol-13-acetate, forskolin, cholera toxin, and 8-bromo-cAMP, was also suppressed after activin-A pretreatment. The presence of the RNA synthesis inhibitor actinomycin-D completely blocked the inhibitory effect of a 3-h activin-A pretreatment on subsequent rGRF-stimulated GH secretion. Pertussis toxin was only partially effective in preventing the inhibition by activin-A. The results of this study indicate that activin-A plays a crucial role as a modulator of somatotropic function, inhibiting GH secretion at the level of the secretory process and secondary to the inhibition of GH biosynthesis.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

L M Bilezikjian, and A Z Corrigan, and W Vale
February 1996, Endocrine journal,
L M Bilezikjian, and A Z Corrigan, and W Vale
February 2002, Journal of neuroendocrinology,
L M Bilezikjian, and A Z Corrigan, and W Vale
March 1990, Molecular and cellular endocrinology,
L M Bilezikjian, and A Z Corrigan, and W Vale
June 1996, Endocrine journal,
L M Bilezikjian, and A Z Corrigan, and W Vale
March 1988, Regulatory peptides,
L M Bilezikjian, and A Z Corrigan, and W Vale
November 1987, Neuroendocrinology,
L M Bilezikjian, and A Z Corrigan, and W Vale
July 1993, Biochemical and biophysical research communications,
L M Bilezikjian, and A Z Corrigan, and W Vale
April 2005, Domestic animal endocrinology,
Copied contents to your clipboard!