Activation of liver and muscle insulin receptor tyrosine kinase activity during in vivo insulin administration in rats. 1990

Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
Research Division, Joslin Diabetes Center, Boston, Massachusetts.

We have studied autophosphorylation and tyrosine kinase activity of the insulin receptor purified from liver and muscle of fasted rats before and after infusion of insulin (100 mU/h) during a 2.5 h glucose clamp. Recovery of insulin receptors and insulin binding to the solubilised receptors was unaffected by the glucose clamp. Autophosphorylation of the insulin receptor beta subunit was increased in liver receptors prepared from rats at the end of the glucose clamp compared to rats in the basal state both in the absence of insulin in vitro (109% increase, p less than 0.001) and after in vitro stimulation with 10(-7) mol/l insulin (clamped vs fasted; 96% increase, p less than 0.001). Insulin (10(-7) mol/l) stimulated autophosphorylation was also increased in muscle receptor preparations from clamped rats compared with rats in the basal state (58% increase, p less than 0.05). In both liver and muscle receptors, the clamp increased the amount of [32P]-phosphate incorporated into the beta subunit without changing the sensitivity of the insulin stimulation. HPLC analysis of the tryptic phosphopeptides derived from the beta subunit after insulin stimulated autophosphorylation of liver receptors revealed an increase of 32P in all phosphorylation sites without any change in the overall pattern. Tyrosine kinase activity of liver and muscle insulin receptors from clamped rats was also increased approximately twofold (p less than 0.05) when analysed using a synthetic substrate (poly Glu4 Tyr1). Our results support the notion that the insulin receptor exists in an active an inactive form, and that elevated plasma insulin concentrations increases the proportion of active receptors.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007332 Insulin Infusion Systems Portable or implantable devices for infusion of insulin. Includes open-loop systems which may be patient-operated or controlled by a pre-set program and are designed for constant delivery of small quantities of insulin, increased during food ingestion, and closed-loop systems which deliver quantities of insulin automatically based on an electronic glucose sensor. Pancreas, Artificial Endocrine,Programmable Implantable Insulin Pump,beta Cell, Artificial,Implantable Programmable Insulin Pump,Insulin Pump, Programmable Implantable,Pump, Programmable Implantable Insulin,Artificial Endocrine Pancreas,Artificial beta Cell,Artificial beta Cells,Cell, Artificial beta,Cells, Artificial beta,Endocrine Pancreas, Artificial,Infusion System, Insulin,Infusion Systems, Insulin,Insulin Infusion System,System, Insulin Infusion,Systems, Insulin Infusion,beta Cells, Artificial
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors

Related Publications

Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
January 1989, Reproduction, nutrition, development,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
October 1989, The Biochemical journal,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
April 1990, Metabolism: clinical and experimental,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
June 1993, Annals of the New York Academy of Sciences,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
April 1988, The American journal of physiology,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
January 1989, Reproduction, nutrition, development,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
July 1992, The Journal of clinical endocrinology and metabolism,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
November 1995, Diabetologia,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
November 1998, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Y T Kruszynska, and P A Halban, and C R Kahn, and M F White
August 1989, The Journal of biological chemistry,
Copied contents to your clipboard!