Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. 1990

W H Griffith
Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University, College Station 77843.

1. Short-term changes in synaptic efficacy were studied at the mossy fiber (MF) to CA3 (MF-CA3) synapse in the in vitro hippocampus. Monosynaptic excitatory postsynaptic currents (EPSCs) were recorded before and during posttetanic potentiation (PTP) with the use of intracellular recording and single-electrode voltage-clamp (SEVC) techniques. 2. Repetitive stimulation (100 Hz for 1 s) of the MF synaptic inputs to CA3 pyramidal cells resulted in PTP averaging 170 +/- 19% (SE, n = 42) over control and decaying with a time constant (tau p) of 59.7 +/- 5 s(n = 23). Reproducible episodes of PTP could be recorded if low stimulus intensities were used. Also, after MF tetanization, a faster component, termed augmentation, preceded PTP but could not be accurately resolved within the experimental protocol; only estimates of this component are included. 3. Biophysical parameters of the EPSC that were monitored before and during PTP included synaptic conductance (G), synaptic reversal potential (Erev), decay time constant (tau EPSC), and input resistance of the postsynaptic cell. During PTP the EPSC synaptic conductance increased from 9.8 to 32.7 nS (P less than 0.02, n = 6), whereas there was no statistical change in Erev (-6.0 compared with -6.7 mV, n = 6), tau EPSC (4.3 compared with 4.5 ms, n = 9), or postsynaptic input resistance (59 compared with 63 M omega, n = 12). 4. A presynaptic contribution to PTP was studied directly by observing changes in transmitter release during PTP. Presynaptic mechanisms were assessed by determining the ratio of evoked synaptic excitatory postsynaptic potentials (EPSPs) over the total number of stimuli (EPSP-to-stimuli ratio). The ratio of EPSP to stimuli changed from 0.64 to 0.90 (P less than 0.01, n = 7) during PTP. A reduction in the number of synaptic failures can only be explained by a presynaptic mechanism. No assumptions concerning the statistical distribution of transmitter release were necessary because no statistical parameters were determined. 5. Changes in postsynaptic cell properties do not appear to contribute to PTP studied under the present experimental conditions. Direct stimulation of the postsynaptic neuron via the intracellular recording electrode (20-100 Hz/1 s) failed to produce potentiation of the EPSC; in fact, a slight depression was observed at 50 and 100 Hz direct stimulation. Likewise, the postsynaptic input resistance and synaptic Erev did not change during PTP. 6. The specific N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (APV, 20 microM) had no effect on either the magnitude or duration of PTP.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W H Griffith
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
W H Griffith
August 1983, Journal of neurophysiology,
W H Griffith
August 1996, Science (New York, N.Y.),
W H Griffith
July 1998, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!