Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field. 1990

D S Liu, and R D Astumian, and T Y Tsong
Department of Biochemistry, University of Minnesota College of Biological Sciences, St. Paul 55108.

Serpersu and Tsong (Sepersu, E. H., and Tsong, T. Y. (1983) J. Membr. Biol. 74, 191-201; (1984) J. Biol. Chem. 259, 7155-7162) reported activation of a K+ pumping mode of (Na,K)-ATPase by an oscillating electric field (20 V/cm, 1.0 kHz). Their attempts to activate Na+ pumping at the same frequency were unsuccessful. We report here activation of a Na+ pumping mode with an oscillating electric field of the same strength as used previously (20 V/cm) but at a much higher frequency (1.0 MHz). At 3.5 degrees C and the optimal amplitude and frequency, the field-induced, ouabain-sensitive (0.2 mM ouabain incubated for 30 min) Rb+ influx ranged between 10 and 20 amol/red blood cell/h, and the corresponding Na+ efflux ranged between 15 and 30 amol/red blood cell/h, varying with the source of the erythrocytes. No Rb+ efflux nor Na+ influx was stimulated by the applied field in the frequency range 1 Hz to 10 MHz. These results indicate that only those transport modes that require ATP splitting under the physiological condition were affected by the applied electric fields, although the field-stimulated Rb+ influx and Na+ efflux did not depend on the cellular ATP concentration in the range 5 to 800 microM. Computer simulation of a four-state enzyme electroconformationally coupled to an alternating electric field (Tsong, T. Y., and Astumian, R. D. (1986) Bioelectrochem. Bioenerg. 15, 457-476; Tsong, T. Y. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 83-106) reproduced the main features of the above results.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

D S Liu, and R D Astumian, and T Y Tsong
January 1988, Methods in enzymology,
D S Liu, and R D Astumian, and T Y Tsong
August 2008, Journal of bioenergetics and biomembranes,
D S Liu, and R D Astumian, and T Y Tsong
June 1984, The Journal of biological chemistry,
D S Liu, and R D Astumian, and T Y Tsong
December 2009, Physical review letters,
D S Liu, and R D Astumian, and T Y Tsong
January 1991, Biochimica et biophysica acta,
D S Liu, and R D Astumian, and T Y Tsong
March 1990, Biochimica et biophysica acta,
D S Liu, and R D Astumian, and T Y Tsong
December 2005, Biochemical and biophysical research communications,
D S Liu, and R D Astumian, and T Y Tsong
January 2019, Journal of biomolecular structure & dynamics,
D S Liu, and R D Astumian, and T Y Tsong
May 1994, FEBS letters,
Copied contents to your clipboard!