D-(-)-beta-hydroxybutyrate inhibits catecholamine-stimulated lipolysis and decreases beta-adrenoceptors' affinity in human fat cells but not in lymphomonocytes. 1990

G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
Cattedra di Endocrinologia dell'Università di Bari, Italy.

The effect of D-(-)-beta-hydroxybutyrate, at concentrations commonly achieved during ketoacidosis in humans (10 mmol/l), on human fat cell lipolysis in vitro was the aim of this study. The basal lipolysis was not modified and beta-hydroxybutyrate did not affect forskolin- or dibutyryl-cAMP-stimulated glycerol release, whereas it markedly inhibited isoproterenol-stimulated lipolysis. In membranes of intact adipocytes exposed to D-(-)-beta-hydroxybutyrate for 1 h, we found a decrease in beta-adrenoceptor affinity in saturation experiments and a shift to the right of the isoproterenol-mediated radioligand [( 125I]-cyanopindolol) displacement curve. These findings suggest that beta-hydroxybutyrate inhibits catecholamine-stimulated lipolysis by decreasing beta-adrenoceptor affinity. No effect of beta-hydroxybutyrate was found on beta-adrenoceptor binding of intact mononuclear cells of peripheral blood. In conclusion, the beta-adrenoceptor affinity lowering effect of beta-hydroxybutyrate is seemingly specific to human fat cells and might represent a feed-back mechanism that prevents an uncontrolled breakdown of triglycerides and indirectly regulates its own production rate.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
July 1995, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
October 1980, Prostaglandins,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
July 2005, The Journal of biological chemistry,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
September 2008, The British journal of nutrition,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
March 1989, Biochemical pharmacology,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
July 1994, Critical care medicine,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
August 1967, Biochemical pharmacology,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
September 1989, European journal of pharmacology,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
September 1995, Obesity research,
G De Pergola, and M Cignarelli, and M Corso, and G Garruti, and S Di Paolo, and R Giorgino
January 1971, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!