Circadian rhythms of biliary protein and lipid excretion in rats. 1990

A Nakano, and P S Tietz, and N F LaRusso
Department of Internal Medicine, Mayo Medical School, Rochester, Minnesota 55905.

To gain insight into the mechanisms by which hepatocytes release lipids and proteins into bile, we studied extended, steady-state secretion of bile, lipids, and lysosomal and canalicular membrane proteins in freely moving, unanesthetized rats with chronic bile fistulas. We found circadian rhythms of biliary secretion for all measured constituents. In the basal state (nocturnal feeding), two distinct secretory patterns emerged: type 1, characterized by a peak at midnight and a nadir at noon; and type 2, characterized by a peak at 8 A.M. and a nadir at 8 P.M. We observed parallel, type 1 circadian rhythms of excretion for bile, biliary lipids (bile acid, cholesterol, phospholipid), and a canalicular membrane enzyme (alkaline phosphodiesterase I). In contrast, a type 2 circadian rhythm was observed for the outputs of two lysosomal enzymes. Hepatic lysosomal enzyme concentrations and the number of pericanalicular lysosomes decreased (P less than 0.05) by 15 and 35%, respectively, at the nadir of their biliary output relative to the time of their peak outputs. In response to daytime feeding, major shifts in the circadian rhythms of excretion of biliary constituents occurred such that secretion of bile, lipids, and the canalicular membrane protein adopted a type 2-like rhythm, whereas the biliary secretion of the lysosomal proteins exhibited a type 1-like pattern. These results indicate that bile flow and biliary excretion of individual lipids and proteins exhibit distinct circadian rhythms that are altered by feeding. Secretory events at the canaliculus that depend on the transmembrane flux of bile acids, such as water and lipid movement or the solubilization of membrane proteins, display a common rhythm.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase

Related Publications

A Nakano, and P S Tietz, and N F LaRusso
September 1986, The American journal of physiology,
A Nakano, and P S Tietz, and N F LaRusso
December 1980, Life sciences,
A Nakano, and P S Tietz, and N F LaRusso
January 1976, Chronobiologia,
A Nakano, and P S Tietz, and N F LaRusso
July 1995, Physiology & behavior,
A Nakano, and P S Tietz, and N F LaRusso
October 1993, Physiology & behavior,
A Nakano, and P S Tietz, and N F LaRusso
November 1975, The American journal of physiology,
A Nakano, and P S Tietz, and N F LaRusso
May 1994, The American journal of physiology,
A Nakano, and P S Tietz, and N F LaRusso
September 1982, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
A Nakano, and P S Tietz, and N F LaRusso
April 1976, The Journal of clinical endocrinology and metabolism,
A Nakano, and P S Tietz, and N F LaRusso
February 1981, Brain research bulletin,
Copied contents to your clipboard!