Coupling of H(+)-K(+)-ATPase activity and glucose oxidation in gastric glands. 1990

J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
Department of Biology, Hässle Gastrointestinal Research Laboratory, Mölndal, Sweden.

The production of 14CO2 from uniformly labeled glucose was shown to account for the entire increase in histamine-stimulated O2 consumption in rabbit gastric glands when no other substrate was added to the medium. The increased production of CO2 was correlated to the increase in O2 consumption and the accumulation of [14C]-aminopyrine (AP) after stimulation with several secretagogues. Inhibitors of H(+)-K(+)-ATPase reduced the secretagogue-induced increase in CO2 production by greater than 90%, showing that the activity of this enzyme was responsible for the greater part of gastric gland metabolism under stimulated conditions. In contrast to AP accumulation, inhibition of CO2 production by omeprazole, an acid-activated inhibitor of the H(+)-K(+)-ATPase, was not reversed by washing. The reversal of AP accumulation after omeprazole treatment and washing was most likely due to a recruitment of residual pumps bordering a nonacidic space, which had not previously been inhibited by omeprazole. These residual pumps slowly generate a pH gradient and hence AP uptake. Adding NH4+ to gastric glands resulted in a concentration-dependent increase of CO2 production up to the maximal stimulated level but without formation of the pH gradient as measured by AP uptake and loss of the omeprazole inhibition of glucose oxidation. As NH4+ can act as a K+ surrogate for H(+)-K(+)-ATPase, and as NH3 is membrane permeant, full stimulation of CO2 production is evidence that the major mechanism of H(+)-K(+)-ATPase activation in situ is an increase in the KCl permeability of the pump membrane.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009853 Omeprazole A 4-methoxy-3,5-dimethylpyridyl, 5-methoxybenzimidazole derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits an H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS. H 168-68,Omeprazole Magnesium,Omeprazole Sodium,Prilosec,H 168 68,H 16868,Magnesium, Omeprazole,Sodium, Omeprazole
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002927 Cimetidine A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output. Altramet,Biomet,Biomet400,Cimetidine HCl,Cimetidine Hydrochloride,Eureceptor,Histodil,N-Cyano-N'-methyl-N''-(2-(((5-methyl-1H-imidazol-4-yl)methyl)thio)ethyl)guanidine,SK&F-92334,SKF-92334,Tagamet,HCl, Cimetidine,Hydrochloride, Cimetidine,SK&F 92334,SK&F92334,SKF 92334,SKF92334
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland

Related Publications

J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
April 1987, The American journal of physiology,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
January 1992, Acta physiologica Scandinavica. Supplementum,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
January 1998, The American journal of physiology,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
January 1987, The American journal of physiology,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
December 1986, Biochimie,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
May 1990, Seikagaku. The Journal of Japanese Biochemical Society,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
October 2011, Comprehensive Physiology,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
November 2006, American journal of physiology. Gastrointestinal and liver physiology,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
June 1982, Biochimica et biophysica acta,
J Fryklund, and K Gedda, and D Scott, and G Sachs, and B Wallmark
January 1988, Progress in clinical and biological research,
Copied contents to your clipboard!