Muscarinic receptors and second-messenger responses of neurons in primary culture. 1990

J Ellis, and J H Huyler, and D E Kemp, and S Weiss
Department of Psychiatry, University of Vermont College of Medicine, Burlington 05405.

The coupling of muscarinic receptors to second messenger responses was investigated in primary cultures of neurons from the fetal mouse brain. Neurons were maintained in monolayer culture, in serum-free medium; immunocytochemical studies found these cultures to be nearly exclusively neuronal. In striatal cultures, [3H]N-methylscopolamine (NMS) bound specifically and with high affinity (Kd = 70 pM) to a homogeneous population of receptors on intact neurons (320 fmol/mg cellular protein). Displacement of the binding of [3H]NMS by pirenzepine indicated the presence of heterogeneous sites (81% high affinity sites, Kh = 51 nM, K1 = 1.5 microM); AF-DX 116 showed the opposite selectivity (15% high affinity sites, Kh = 56 nM, K1 = 1.3 microM). The dopamine agonist SKF-38393 (1 microM) enhanced the accumulation of cyclic adenosine monophosphate (AMP) in these cultures 2.5-fold; addition of carbachol reduced cyclic AMP levels by 30% (EC50, 1.7 microM). In the presence of 1 mM lithium, carbachol stimulated the accumulation of inositol monophosphate 5-fold (EC50, 61 microM). Both responses were antagonized by pirenzepine (apparent Ki of 23 nM for the phosphoinositide response and 200 nM for the cyclic AMP response) and AF-DX 116 (apparent Ki 540 nM and 160 nM, respectively). In binding studies on brainstem cultures, AF-DX 116 indicated the presence of two sites of approximately equal abundance (Kh = 170 nM, K1 = 2.9 microM); data for pirenzepine were adequately fit by a one-site model (Kd = 630 nM).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012601 Scopolamine An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. Hyoscine,Scopolamine Hydrobromide,Boro-Scopol,Isopto Hyoscine,Kwells,Scoburen,Scopace,Scopoderm TTS,Scopolamine Cooper,Transderm Scop,Transderm-V,Travacalm HO,Vorigeno,Boro Scopol,Transderm V
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D015647 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine A selective D1 dopamine receptor agonist used primarily as a research tool. 1H-3-Benzazepine-7,8-diol, 2,3,4,5-tetrahydro-1-phenyl-,R-SK&F 38393,SK&F-38393,SKF 38393-A,SKF-38393,SKF38393,RSK&F 38393,SK&F 38393,SK&F38393,SKF 38393,SKF 38393 A,SKF 38393A

Related Publications

J Ellis, and J H Huyler, and D E Kemp, and S Weiss
December 1990, European journal of pharmacology,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
October 1990, European journal of pharmacology,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
October 1991, Biochemical pharmacology,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
January 1992, Pharmacological research,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
January 1990, Progress in brain research,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
October 1990, Neuroscience letters,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
June 1995, Journal of neuroscience methods,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
January 1995, Cellular signalling,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
December 1991, The American journal of physiology,
J Ellis, and J H Huyler, and D E Kemp, and S Weiss
January 1991, Advances in experimental medicine and biology,
Copied contents to your clipboard!