[Current possibilities in the therapy of hepatic encephalopathy]. 1990

P J Meier, and G Bansky
Abteilung für Klinische Pharmakologie, Medizinische Klinik, Universitätsspital Zürich.

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome associated with acute or chronic liver disease. It is generally considered a metabolic and potentially reversible syndrome. An important component of HE is increased neuro-inhibition caused by reduced hepatic metabolism of gut-derived nitrogenous substances and by activation of the postsynaptic GABAA-receptor complex in the central nervous system. Effective conventional therapy of HE includes prevention of precipitating factors, restriction of dietary protein an administration of lactulose (or lactitol) and possibly also of antibiotics. In addition, animal studies and uncontrolled clinical studies indicate that the benzodiazepine antagonist flumazenil effectively diminishes the increased neuroinhibition in certain patients with HE. However, these favourable flumazenil effects must be confirmed in larger randomized and placebo-controlled multicenter studies before flumazenil can be regarded as a useful new addition to current management of patients with acute or chronic hepatic encephalopathy.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D006501 Hepatic Encephalopathy A syndrome characterized by central nervous system dysfunction in association with LIVER FAILURE, including portal-systemic shunts. Clinical features include lethargy and CONFUSION (frequently progressing to COMA); ASTERIXIS; NYSTAGMUS, PATHOLOGIC; brisk oculovestibular reflexes; decorticate and decerebrate posturing; MUSCLE SPASTICITY; and bilateral extensor plantar reflexes (see REFLEX, BABINSKI). ELECTROENCEPHALOGRAPHY may demonstrate triphasic waves. (From Adams et al., Principles of Neurology, 6th ed, pp1117-20; Plum & Posner, Diagnosis of Stupor and Coma, 3rd ed, p222-5) Encephalopathy, Hepatic,Portosystemic Encephalopathy,Encephalopathy, Hepatocerebral,Encephalopathy, Portal-Systemic,Encephalopathy, Portosystemic,Fulminant Hepatic Failure with Cerebral Edema,Hepatic Coma,Hepatic Stupor,Hepatocerebral Encephalopathy,Portal-Systemic Encephalopathy,Coma, Hepatic,Comas, Hepatic,Encephalopathies, Hepatic,Encephalopathies, Hepatocerebral,Encephalopathies, Portal-Systemic,Encephalopathies, Portosystemic,Encephalopathy, Portal Systemic,Hepatic Comas,Hepatic Encephalopathies,Hepatic Stupors,Hepatocerebral Encephalopathies,Portal Systemic Encephalopathy,Portal-Systemic Encephalopathies,Portosystemic Encephalopathies,Stupor, Hepatic,Stupors, Hepatic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P J Meier, and G Bansky
March 1977, Minerva medica,
P J Meier, and G Bansky
February 1985, La Clinica terapeutica,
P J Meier, and G Bansky
January 2020, Journal of clinical and experimental hepatology,
P J Meier, and G Bansky
January 1974, Gastroenterology,
P J Meier, and G Bansky
June 2023, Metabolic brain disease,
P J Meier, and G Bansky
November 2018, The American journal of gastroenterology,
P J Meier, and G Bansky
December 2003, Deutsche medizinische Wochenschrift (1946),
P J Meier, and G Bansky
June 2009, Therapeutics and clinical risk management,
P J Meier, and G Bansky
September 1992, European journal of clinical investigation,
P J Meier, and G Bansky
January 2015, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
Copied contents to your clipboard!