Binding of unsaturated fatty acids to Na+, K(+)-ATPase leading to inhibition and inactivation. 1990

H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
Department of Biochemistry, University of Nijmegen, The Netherlands.

The effects of free fatty acids on the mechanism of action of Na+, K(+)-ATPase were studied. Unsaturated free fatty acids (palmitoleic acid, oleic acid, linoleic acid and arachidonic acid) inhibited the Na+, K(+)-ATPase activity within a narrow range, while saturated and methylated fatty acids had little or no effect. The following effects of oleic acid were found: (1) The affinity for K+ on the overall ATPase and the p-nitrophenylphosphatase reaction as well as the maximal activities were decreased. (2) The Na(+)-ATPase activity was also inhibited but the '0'-ATPase activity was hardly changed. (3) The steady-state ATP phosphorylation level in the presence of Na+ was not influenced. (4) The dephosphorylation rate constant of the phosphointermediate was slightly decreased, resulting in elevated phosphorylation levels in the absence of Na+. (5) The inhibitory effect of ATP on the dephosphorylation rate was not affected. (6) The K+ sensitivity of the phosphoenzyme in the presence as well as in the absence of Na+ was decreased. (7) Ouabain binding was inhibited. Both the affinity and the number of binding sites were lowered. In addition it was found that Na+, K(+)-ATPase binds oleic acid linearly with the fatty acid concentration up to more than 100 mol oleic acid per mol alpha beta oligomer of Na+, K(+)-ATPase. Prolonged incubation with oleic acid led to irreversible inactivation of the enzyme. This inactivation was dependent on the reaction conditions: ligands, temperature, enzyme concentration, time and fatty acid concentration. The combined presence of inactivation (long term effects) and the effects on the (K(+)-activated) dephosphorylation (short term effects) explain the mixed type inhibition of free fatty acids as observed in assays for K(+)-activated ATPase, K(+)-activated p-nitrophenylphosphatase and ouabain binding. It also explains the sharp inhibition curve in the Na+, K(+)-ATPase activity test.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
April 1977, Journal of molecular and cellular cardiology,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
November 1982, Biochimica et biophysica acta,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
April 1988, Journal of neurochemistry,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
January 2005, Cell biochemistry and biophysics,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
January 1990, Biochemistry international,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
July 1994, Research communications in molecular pathology and pharmacology,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
January 1974, Annals of the New York Academy of Sciences,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
February 1993, Brain research,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
September 1980, Biochimica et biophysica acta,
H G Swarts, and F M Schuurmans Stekhoven, and J J De Pont
December 1981, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!