[The effect of holotoxin A1 on transport of calcium ions across the lipid models of biological membranes]. 1990

D L Aminin, and A V Lebedev, and D O Levitskiĭ

Planar bilayer lipid membranes formed from trepang phospholipids possess an intrinsic Ca2(+)-permeability. These phospholipids dissolved in a non-polar solvent can extract 45Ca2+ from the aqueous to the organic phase. The triterpenic glycoside holotoxin A isolated from the trepang Stichopus japonicus inhibits the Ca2+ flux of lipid bilayers from trepang phospholipids as well as the Ca2+ flux induced in phosphatidylcholine bilayers by the calcium ionophore X-537A. Toxin inhibits the Ca2+ ionophore A23187 induced Ca2+ efflux from phosphatidylcholine liposomes and 45Ca2+ transition from the aqueous to the organic phase. Holotoxin A does not inhibit the 45Ca2+ transfer to the non-polar phase induced by holoturia phospholipids and does not affect the phosphatidylcholine hydroperoxide-induced Ca2+ flux of lipid bilayers. Using the fluorescent probe pyrene, it was demonstrated that toxin increases the microviscosity of liposomal membranes and trepang oocyte "ghosts".

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012616 Sea Cucumbers A class of Echinodermata characterized by long, slender bodies. Holothuroidea,Cucumber, Sea,Cucumbers, Sea,Holothuroideas,Sea Cucumber
D014315 Triterpenes A class of terpenes (the general formula C30H48) formed by the condensation of six isoprene units, equivalent to three terpene units. Triterpene,Triterpenoid,Triterpenoids

Related Publications

D L Aminin, and A V Lebedev, and D O Levitskiĭ
January 1989, Biofizika,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
April 1949, Physiological reviews,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
January 1995, Bioelectromagnetics,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
January 1973, The Journal of membrane biology,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
March 2015, Chemical communications (Cambridge, England),
D L Aminin, and A V Lebedev, and D O Levitskiĭ
October 2022, Annual review of cell and developmental biology,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
September 1991, Rinsho byori. The Japanese journal of clinical pathology,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
March 1990, Kidney international. Supplement,
D L Aminin, and A V Lebedev, and D O Levitskiĭ
January 1993, Postepy biochemii,
Copied contents to your clipboard!